Từ điểm M nằm ngoài đường tròn (O; R) sao cho OM = 2R. Kẻ hai tiếp tuyến MA và MB (A, B là tiếp điểm). Kẻ cát tuyến MCD đến đường tròn (O) (C nằm giữa M và D).
a/ Chứng minh tứ giác MAOB nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác đó.
b/ Chứng minh MC. MD = 3R2
c/ OM cắt (O) tại F sao cho O nằm giữa M và F. Chứng minh tam giác AFB đều.
d/ Gọi E là giao điểm của FC và đường tròn (I). Xác định vị trí cát tuyến của MCD để SFBE đạt giá trị lớn nhất và tính giá trị đó theo R.