Tìm giá trị NN hoặc LN
A= \(-\left(y+7\right)^2_{ }+11\)
tìm giá trị LN hoặc NN
\(A=-\left(y+7\right)^2+11\)
tìm các giá trị lớn nhất hoặc nhỏ nhất của các biểu thức sau( x,y thuộc Z)
\(E=-\left(x+1\right)^2-|2-y|+11\)
\(F=\left(x-1\right)^2+|2y+2|-3\)
\(G=\left(x+5\right)^2+\left(2y-6\right)^2+1\)
\(H=-3-\left(2-x\right)^2-\left(3-y\right)^2\)
\(I=5-|2x+6|-|7-y|\)
tìm giá trị lớn nhất , nhỏ nhất trên \(\left[\frac{1}{4};4\right]\)của \(y=\frac{1}{3}log_{\frac{1}{2}}^3x+log^2_{\frac{1}{2}}x-\left(3log_{\frac{1}{2}}x\right)+1\)
ta có
\(\)\(y=\frac{1}{3}\log^3_{\frac{1}{2}}x+\log^2_{\frac{1}{2}}x-3\log_{\frac{1}{2}}x+1\)
Đặt =\(t=\log_{\frac{1}{2}}x\) ta có
\(y=\frac{1}{3}t^3+t^2-3t+1\)
với \(\frac{1}{4}\le x\le4\Leftrightarrow\frac{1}{4}\le\left(\frac{1}{2}\right)^t\le4\Leftrightarrow-2\le t\le2\)
thay vì tính GTLN,GTNN của hàm số y trên [1/4;4] ta tính GTLN,GTNN của hàm số trên [-2;2]
ta tính \(y'=t^2+2t-3\)
ta tính y'=0 suy ra t=1(loại);t=-3(loại)
ta tính y(2)=\(\frac{5}{3}\);y(-2)=\(\frac{-25}{3}\)
vậy GTNN của y=\(\frac{-25}{3}khi\log_{\frac{1}{2}}x=-2\Rightarrow x=4\)
hàm số đạt GTLN y=\(\frac{5}{3}\) khi \(\log_{\frac{1}{2}}x=2\Leftrightarrow x=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
Tìm giá trị nhỏ nhất: \(\dfrac{2\left|x-1\right|+11}{\left|x-1\right|+7}\)
Bài 1 : cho biểu thức
\(p=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\) với x lớn hơn hoặc bằng 0 ; x # 1
1) rút gọ P
2 tìm x để P = \(\dfrac{7}{4}\)
tìm giá trị nhỏ nhất của p
1, Với \(x\ge0,x\ne1\) ta có :
\(P=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}}{x-1}:\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)
2, Ta có \(P=\dfrac{7}{4}\)
\(\Rightarrow\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}=\dfrac{7}{4}\)
\(\Leftrightarrow4\left(2\sqrt{x}+1\right)=7\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow8\sqrt{x}+4=7\sqrt{x}=7\)
\(\Leftrightarrow\sqrt{x}=3\)
\(\Leftrightarrow x=9\left(tm\right)\)
1) Ta có: \(P=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)
\(=\left(\dfrac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}-1}\right)\)
\(=\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}-\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)
2) Để \(P=\dfrac{7}{4}\) thì \(\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}=\dfrac{7}{4}\)
\(\Leftrightarrow4\cdot\left(2\sqrt{x}+1\right)=7\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow8\sqrt{x}+4=7\sqrt{x}+7\)
\(\Leftrightarrow8\sqrt{x}-7\sqrt{x}=7-4\)
\(\Leftrightarrow\sqrt{x}=3\)
hay x=9(nhận)
Vậy: Để \(P=\dfrac{7}{4}\) thì x=9
Tìm GTLN hoặc NN
\(K=5x^2+4xy+y\left(y-4\right)-10x\)
\(K=5x^2+4xy+y\left(y-4\right)-10x\)
\(K=5x^2+4xy+y^2-4y-10x\)
\(K=\left(4x^2+4xy+y^2\right)+x^2-4y-10x\)
\(K=\left[\left(2x+y\right)^2-2\left(2x+y\right).2+4\right]+\left(x^2-2x+1\right)-5\)
\(K=\left(2x+y-2\right)^2+\left(x-1\right)^2-5\)
Mà \(\left(2x+y-2\right)^2\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow K\ge-5\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}2x+y-2=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)
Vậy \(K_{Min}=-5\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)
\(K=5x^2+4xy+y\left(y-4\right)-10x.\)
\(=\left(4x^2+y^2+4+4xy-8x-4y\right)+\left(x^2-2x+1\right)-1\)
\(=\left(\left(2x\right)^2+y^2+2^2+2.2x.y-2.2x.2-2.y.2\right)+\left(x^2-2x+1\right)-1\)
\(=\left(2x+y-2\right)^2+\left(x-1\right)^2-1\ge-1\)
Dấu "=" xảy ra khi
\(\hept{\begin{cases}\left(2x+y-2\right)^2=0\\\left(x-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}}\)
Câu trên T làm sai rồi. Quên để ý phía trước có cộng thêm 4. MinK=-5
\(A=-\left(-2x+\frac{5}{2}\right).2-\frac{7}{3}\)tìm GTLN hoặc NN
Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất
\(A=\dfrac{2022}{\left|x\right|+2003}\)
\(B=\left(\left|x\right|+1\right)^{10}+2009\)
a: |x|+2003>=2003
=>A<=2022/2003
Dấu = xảy ra khi x=0
b: |x|+1>=1
=>(|x|+1)^10>=1
=>B>=2010
Dấu = xảy ra khi x=0
\(A=3\left|1-2x\right|-5\)tìm giá trị LN hoăc NN