Câu 2 : (7đ) Cho hình thang MNPQ ( MN // PQ ) . Gọi A, B, lần lượt là trung điểm của MQ, NP. AB cắt MP tại I, cắt NQ tại K.Chứng minh MA = AP, NB = BQ
Cho hình thang MNPQ(MN//PQ). Gọi A là trung điểm MQ, B là trung điểm NP. Đường AB cắt MP tại E, cắt NQ tại E
a) Chứng minh FM=FB; EN=EQ b) Cho MN=4cm; QP=8cm. Tính AE; FB;EF
Xét hình thang MNPQ có A là trung điểm MQ và B là trung điểm NP
=> AB là đường trung bình của hình thang MNPQ
=> AB//MN//PQ
Xét tam giác MQN có: A là trung điểm MQ và AE//MN
=> AE là đường trung bình của tam giác QMN
=> E là trung điểm QN
=> EN=EQ
Tương tự xét tam giác PMN có BF là đường trung bình
=> F là trung điểm MP
=> FM=FP
b) AB là đường trung bình của hình thang MNPQ
=> AB=(MN+QP):2=6 (cm)
AE là đường trung bình của tam giác MQN
=> AE=1/2 MN =1/2 .4=2 (cm)
BF là đường trung bình của tam giác MNP
=> BF =1/2 MN=2 (cm)
=> EF=AB-AE-BF=6-2-2=2 (cm)
Cho hình thang MNPQ (MN // PQ ), có O là giao điểm 2 đường chéo MP và NQ.
Đường thẳng song song với MN cắt MQ, NQ, MP, NP lần lượt tại A, B, C, D.
a) Chứng minh OM . OB = ON . OC
b) Chứng minh AB = CD
Cho hình thang MNPQ (MN // PQ). A và B theo thứ tự là trung điểm của MQ và NP. Gọi và K lần lượt là giao điểm của AB với NQ và MP. Biết MN = 8cm và PQ = 16cm a) Chứng minh AI=KB >) Tính AI, KB và IK
a: Xét hình thang MNPQ có
A là trung điểm của MQ
B là trung điểm của NP
Do đó: AB là đường trung bình của hình thang MNPQ
Suy ra: AB//MN//PQ
Xét ΔQMN có AI//MN
nên \(\dfrac{AI}{MN}=\dfrac{AQ}{QM}=\dfrac{1}{2}\left(1\right)\)
Xét ΔPMN có KB//MN
nên \(\dfrac{KB}{MN}=\dfrac{1}{2}\left(2\right)\)
Từ (1) và (2) suy ra AI=KB
Cho hình thang MNPQ (MN//PQ). Gọi A là trung điểm MQ, B là trung điểm NP. Đường AB cắt MP tại F, cắt NQ tại E
a) CM FM=FB; EN=EQ
b) Cho MN=4cm; QP=8cm. Tính AE; FB; EF
Cho hình thang cân MNPQ( MN//PQ). Gọi A, B, C , D lần lượt là trung điểm của MN, NP, PQ, MQ. Tứgiác ABCD là hình gì?
*Gợi ý:
+MP = NQ theo tính chất hìnhthang cân
+ Sửdụng tính chất đường trung bình của tam giác Chứng minh tứgiác ABCD là hình thoi theo dấu hiệu tứgiác có bốn cạnh bằng nhau
Cho hình thang cân MNPQ( MN//PQ). Gọi A, B, C , D lần lượt là trung điểm của MN, NP, PQ, MQ. Tứgiác ABCD là hình gì? ( Giúp mình với)
*Gợi ý: +MP = NQ theo tính chất hìnhthang cân
+ Sửdụng tính chất đường trung bình của tam giác Chứng minh tứgiác ABCD là hình thoi theo dấu hiệu tứgiác có bốn cạnh bằng nhau
Cho hình thang cân MNPQ( MN//PQ). Gọi A, B, C , D lần lượt là trung điểm của MN, NP, PQ, MQ. Tứgiác ABCD là hình gì? ( Giúp mình với)
*Gợi ý: +MP = NQ theo tính chất hìnhthang cân
+ Sửdụng tính chất đường trung bình của tam giác Chứng minh tứgiác ABCD là hình thoi theo dấu hiệu tứgiác có bốn cạnh bằng nhau
cho tứ giác MNPQ có MP vuông góc NQ tại O. Gọi A,B,C,D lần lượt là trung điểm MN, NP, PQ, MQ. Chứng minh: OA+OB+OC+OD bằng nửa chu vi MNPQ
cho hình thang MNPQ (MN//PQ,MN<PQ) a là giao của MP và NQ
a) cho AM/AQ =3/5 và AN =6cm , MN =7cm
Tính AP =?, QP=?
b,MP giao NQ tại O , kẻ đường thẳng qua O và song song với MN, PQ , dường thẳng này cắt MQ tại E cắt PN tại F . cm OE=OF
b: Xét hình thang MNPQ có EF//QP
nên ME/MQ=NF/NP(1)
Xét ΔMQP có EO//QP
nên EO/QP=ME/MQ(2)
Xét ΔNQP có OF//QP
nên OF/QP=NF/NP(3)
Từ (1), (2) và (3) suy ra OE/QP=OF/QP
hay OE=OF