Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuyết Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 1 2022 lúc 14:46

a: \(P=\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}+\dfrac{4x^2}{x^2-9}\right):\dfrac{2x+1-x-3}{x+3}\)

\(=\dfrac{-x^2-6x-9+x^2-6x+9+4x^2}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x-2}\)

\(=\dfrac{4x^2-12x}{x-3}\cdot\dfrac{1}{x-2}=\dfrac{4x}{x-2}\)

b: \(2x^2-5x+2=0\)

=>(x-2)(2x-1)=0

=>x=1/2

Thay x=1/2 vào P, ta được:

\(P=\left(4\cdot\dfrac{1}{2}\right):\left(\dfrac{1}{2}-2\right)=2:\dfrac{-3}{2}=\dfrac{-4}{3}\)

 

Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
Lê Thị Thục Hiền
9 tháng 6 2021 lúc 10:19

a)Đk:\(\left\{{}\begin{matrix}x^2-4\ne0\\2x^2-x^3\ne0\\x^2-3x\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)\left(x+2\right)\ne0\\x^2\left(2-x\right)\ne0\\x\left(x-3\right)\ne0\end{matrix}\right.\)\(\Leftrightarrow x\ne\left\{2;-2;0;3\right\}\)

b)\(P=\left[\dfrac{\left(2+x\right)^2}{\left(2+x\right)\left(2-x\right)}+\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{\left(2-x\right)^2}{\left(2+x\right)\left(2-x\right)}\right]:\dfrac{x\left(x-3\right)}{x^2\left(2-x\right)}\)

\(=\dfrac{\left(2+x\right)^2-4x^2-\left(2-x\right)^2}{\left(2+x\right)\left(2-x\right)}.\dfrac{x^2\left(2-x\right)}{x\left(x-3\right)}\)

\(=\dfrac{4+4x+x^2-4x^2-4+4x-x^2}{\left(2+x\right)\left(2-x\right)}.\dfrac{x\left(2-x\right)}{x-3}\)

\(=\dfrac{x\left(8x-4x^2\right)}{\left(2+x\right)\left(x-3\right)}\) (sai đề chỗ nào ko em)

c)\(\left|x-5\right|=2\Leftrightarrow\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=7\left(tm\right)\\x=3\left(ktm\right)\end{matrix}\right.\)

Thay x=7 vào bt P ta được: \(P=\dfrac{7\left(8.7-4.7^2\right)}{\left(2+7\right)\left(7-3\right)}=-\dfrac{245}{9}\)

Kim Tuyến
Xem chi tiết
D-low_Beatbox
8 tháng 6 2021 lúc 15:36

a, ĐKXĐ: x2-4≠0 ⇔ x≠±2

b, \(\dfrac{x^2-4x+4}{x^2-4}\)=\(\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\)=\(\dfrac{x-2}{x+2}\)

c, |x|=3

TH1: x≥0 thì x=3 (TMĐK)

TH1: x<0 thì x=-3 (TMĐK)

Thay x=3 và biểu thức ta có:

\(\dfrac{3-2}{3+2}\)=\(\dfrac{1}{5}\)

Thay x=-3 và biểu thức ta có:

\(\dfrac{-3-2}{-3+2}\)=5

Kim Tuyến
Xem chi tiết
Yeutoanhoc
9 tháng 6 2021 lúc 8:20

`a)ĐK:x^2-4 ne 0<=>x^2 ne 4`
`<=>x ne 2,x ne -2`
`b)A=(x^2-4x+4)/(x^2-4)`
`=(x-2)^2/((x-2)(x+2))`
`=(x-2)/(x+2)`
`c)|x|=3`
`<=>`  \(\left[ \begin{array}{l}x=3\\x=-3\end{array} \right.\) 
`<=>`  \(\left[ \begin{array}{l}A=\dfrac{3-2}{3+2}=\dfrac15\\x=\dfrac{-3-2}{-3+2}=5\end{array} \right.\) 
`d)A=2`
`=>x-2=2(x+2)`
`<=>x-2=2x+4`
`<=>x=-6`

Lê Ng Hải Anh
9 tháng 6 2021 lúc 8:21

a, ĐKXĐ: \(x^2-4\ne0\Leftrightarrow x\ne\pm2\)

b, Ta có: \(\dfrac{x^2-4x+4}{x^2-4}=\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\) (*)

c, \(\left|x\right|=3\Rightarrow x=\pm3\)

_ Thay x = 3 vào (*), ta được: \(\dfrac{3-2}{3+2}=\dfrac{1}{5}\)

_ Thay x = -3 vào (*), ta được: \(\dfrac{-3-2}{-3+2}=5\)

d, Có: \(\dfrac{x-2}{x+2}=2\)

\(\Leftrightarrow x-2=2\left(x+2\right)\)

\(\Leftrightarrow x-2=2x+4\)

\(\Leftrightarrow x=-6\left(tm\right)\)

Vậy...

Lê Đức Mạnh
Xem chi tiết
Phạm Khang
15 tháng 1 2023 lúc 12:26

loading...  c/ 

Ta có : B=2=>6/2-2x

<=>6=4-4x

<=>6-4=-4x

<=>-4x=2

<=>x=2/-4=-1/2

d/ĐKXĐ:2-2x≠0
<=>2(1-x)≠0<=>-2(x-1)≠0

<=>x≠1

Để giá trị của biểu thức B nguyên thì 2-2x là Ư(6)

=>2-2x ∈ Ư(6)={±1;±2;±3;±6) Nếu 2-2x=1=> -2x=-1=>x=1/2( thoả mãng)

Rồi còn nhiêu bạn tự xét trường hợp y trang cách làm ở trênn nnhan :;)).À sẽ có mấy cái trường hợp nó giống ĐKXĐ thì bạn ghi trong ngoặc ko thoã mãn nhan.

Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
D-low_Beatbox
9 tháng 6 2021 lúc 20:18

a, ĐKXĐ: x≠±2

A=\(\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right)\left(x-2+\dfrac{10-x^2}{x+2}\right)\)

A=\(\left(\dfrac{x}{x^2-4}-\dfrac{2x+4}{x^2-4}+\dfrac{x-2}{x^2-4}\right)\left(\dfrac{x^2+2x}{x+2}-\dfrac{2x+4}{x+2}+\dfrac{10-x^2}{x+2}\right)\)

A=\(\left(\dfrac{-6}{x^2-4}\right)\left(\dfrac{6}{x+2}\right)\)

A=\(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\)

b, |x|=\(\dfrac{1}{2}\)

TH1z: x≥0 ⇔ x=\(\dfrac{1}{2}\) (TMĐKXĐ)

TH2: x<0 ⇔ x=\(\dfrac{-1}{2}\) (TMĐXĐ)

Thay \(\dfrac{1}{2}\)\(\dfrac{-1}{2}\) vào A ta có:

\(\dfrac{-36}{\left(\dfrac{1}{2}-2\right)\left(\dfrac{1}{2}+2\right)^2}\)=\(\dfrac{96}{25}\)

\(\dfrac{-36}{\left(\dfrac{-1}{2}-2\right)\left(\dfrac{-1}{2}+2\right)^2}\)=\(\dfrac{32}{5}\)

c, A<0 ⇔ \(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\) ⇔ (x-2)(x+2)< 0

⇔   {x-2>0        ⇔      {x>2

     [                           [

       {x+2<0                 {x<2

⇔   {x-2<0        ⇔      {x<2

     [                           [

       {x+2>0                 {x>2

⇔ x<2 

Vậy x<2 (trừ -2)

 

 

 

 

Kim Tuyến
Xem chi tiết