chứng tỏ rằng : M=1/3+1/3^2+1/3^3+......+1/3^99 <1/2
Chứng tỏ rằng M<1/2 biết M = 1/3+1/3^2+1/3^3+...+1/3^99
\(\frac{M}{3}=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{100}}\)
\(\frac{2M}{3}=M-\frac{M}{3}=\frac{1}{3}-\frac{1}{3^{100}}\)
\(2M=1-\frac{1}{3^{99}}\Rightarrow M=\frac{1}{2}-\frac{1}{2.3^{99}}
A) Tính M: 3/4.8/9.15/16.9999/10000 B) Chứng tỏ rằng: 1/26+1/27+...+1/50=99/50-97/49+...+7/4-5/3+3/2-1
\(M=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\cdot\cdot\cdot\frac{9999}{10000}\)
\(=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot\cdot\cdot\cdot\frac{99.101}{100.100}\)
\(=\frac{1}{2}\cdot\frac{101}{100}=\frac{101}{200}\)
Xét vế phải :
\(VP=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}-1\)
\(=2.\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)
\(=2\left[\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right]\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}=VT\Rightarrow\left(đpcm\right)\)
1 Cho S = 2 + 2^2 + 2^3 + 2^4 + ............+ 2^10 Chứng tỏ chia hết cho 3
1 Chứng tỏ rằng 1+ 3+ 3^2 +3^3 +............+ 3^99 chia hết cho 40
a) S = 2 + 22 + 23 + 24 +.....+ 29 + 210
= (2 + 22) + (23 + 24) +.....+ (29 + 210)
= 2(1 + 2) + 23(1 + 2) +....+ 29(1 + 2)
= 3.(2 + 23 +.... + 29) chia hết cho 3
=> S = 2 + 22 + 23 + 24 +.....+ 29 + 210 chia hết cho 3 (Đpcm)
b) 1+32+33+34+...+399
=(1+3+32+33)+....+(396+397+398+399)
=40+.........+396.40
=40.(1+....+396) chia hết cho 40 (đpcm)
BÀI 1:
S = 2 + 22 + 23 + 24 + ..... + 210
= (2 + 22) + ( 23 + 24) + ..... + (27 + 28) + (29 + 210)
= 2(1 + 2) + 23(1 + 2) + ..... + 27(1 + 2) + 29(1 + 2)
= 3(2 + 23 + .... + 27 + 29) \(⋮3\)
BÀI 2:
1 + 3 + 32 + 33 + ....... + 399
= (1 + 3 + 32 + 33) + ..... + (396 + 397 + 398 + 399)
= (1 + 3 + 32 + 33) + ..... + 396(1 + 3 + 32 + 33)
= 40(1 + 34 + ..... + 396) \(⋮40\)
Cho M=(1+1/2+1/3+...+1/98).2.3.4 ... 98. Chứng tỏ rằng M chia hết cho 99.
Tính một lúc ta được M=1+2+3+...+98
\(M=\left(1+98\right)+\left(2+97\right)+...\left(49+50\right)\)
\(M=99+99+99+...+99\)
Vậy M chia hết cho 99
Ai tích mk mk tích lại cho
Tìm 2M rồi trừ cho M sẽ ra kết quả
Mình giải cho đợi tí
M=( 1+98+2+97+3+96+.....+49+50)
M=99+99+99+99+...+99
vậy M chia hết cho 99
ai tích mình tích lí nhà
Bài 5. Chứng tỏ rằng M = 1 1 1 2.3.4...98. 1 ... 2 3 98 + + + + chia hết cho 99
Đề lỗi công thức khá khó đọc. Bạn xem lại.
chứng tỏ rằng:1/2^2+1/3^2+1/4^2+...+1/99^2+1/100^2<3/4
Chứng tỏ rằng: 1/2*3+1/3*4+1/4*5+....+1/99*100<1/2
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}< \frac{1}{2}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}< \frac{1}{2}\)
\(=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\left(đpcm\right)\)
Cho M = (1 + 1/2+1/3+...+1/98).2.3.4...98
Chứng tỏ rằng M chia hết cho 99
Cho A= 1/4+1/4^2+1/4^3+...+1/4^99. Chứng tỏ rằng A<1/3
A = 1/4 + 1/4² + 1/4³ + ... + 1/4⁹⁹
⇒ 4A = 1 + 1/4 + 1/4² + ... + 1/4⁹⁸
⇒ 3A = 4A - A
= (1 + 1/4 + 1/4² + ... + 1/4⁹⁸) - (1/4 + 1/4² + 1/4³ + ... + 1/4⁹⁹)
= 1 - 1/4⁹⁹
⇒ A = (1 - 1/4⁹⁹)/3
Do 1 - 1/4⁹⁹ < 1
⇒ (1 - 1/4⁹⁹)/3 < 1/3
Vậy A < 1/3