Chứng tỏ rằng: 1/2*3+1/3*4+1/4*5+....+1/99*100<1/2
Chứng tỏ rằng
[200-(3+2/3+2/4+2/5+...+2/100]:[1/2+2/3+3/4+...+99/100]=2
chứng tỏ rằng
1/22+1/32+1/42...+1/1002<99/100
2. Chứng tỏ rằng
1-1/2+1/3-1/4+...+1/99-1/100=1/51+1/52+...+1/100
Chưng tỏ
a, S= 1/2^2+1/3^2+...+1/9^2
Chứng tỏ 2/5<S<8/9
b, 1/2-1/4+1/8-1/16+1/32-1/64<1/3
c, 1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100<3/16
Chứng tỏ rằng
a, 1*3*5*...*99=(51/2)*(52/2)* ... * (100/2)
b, 1-1/2+1/3-1/4+...-1/1990=1/996+1/997+...91/1990
Chứng tỏ rằng: \(\frac{49}{100}< S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)<1
Cho \(S=\dfrac{1}{5^2}+\dfrac{2}{5^3}+\dfrac{3}{5^4}+...+\dfrac{99}{5^{100}}\). Chứng tỏ rằng S<\(\dfrac{1}{16}\)
Cho S=\(\dfrac{1}{5^2}+\dfrac{2}{5^3}+\dfrac{3}{5^4}+...+\dfrac{99}{5^{100}}\) . Chứng tỏ rằng \(S< \dfrac{1}{16}\)