CMR
Vs mọi số tự nhiên n, thì
\(n^3+\left(n+1\right)^3+\left(n+2\right)^3\)chia hết cho 9
CMR
Vs mọi số tự nhiên n, thì
\(n^3+\left(n+1\right)^3+\left(n+2\right)^3\)chia hết cho 9
\(n^3+\left(n+1\right)^3+\left(n+2\right)^3\)
\(=n^3+n^3+3n^2+3n+1+n^3+3n^2.2+3n.2^2+2^3\)
\(=3n^3+9n^2+15n+9=3\left(n^3+3n^2+5n+3\right)\)
\(=3\left(n^3+n^2+2n^2+2n+3n+3\right)\)
\(=3\left[n^2\left(n+1\right)+2n\left(n+1\right)+3\left(n+1\right)\right]\)
\(=3\left[\left(n+1\right)\left(n^2+2n\right)+3\left(n+1\right)\right]\)
\(=3n\left(n+1\right)\left(n+2\right)+9\left(n+1\right)\)
Vì n(n+1)(n+2) là tích 3 stn liên tiếp nên tích này chia hết cho 3
=>\(3n\left(n+1\right)\left(n+2\right)⋮9\) mà \(9\left(n+1\right)⋮9\)
=>\(n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9\)
Chứng minh rằng với mọi số tự nhiên n, \(\left(2^{3^{^n}}+1\right)⋮\left(3^{n+1}\right)\)nhưng không chia hết cho \(3^{n+2}\)
Do 2 + 1 chia hết cho 3 nên theo bổ đề LTE ta có \(v_3\left(2^{3^n}+1\right)=v_3\left(2+1\right)+v_3\left(3^n\right)=n+1\).
Do đó \(2^{3^n}+1⋮3^{n+1}\) nhưng không chia hết cho \(3^{n+2}\).
1)chứng ninh rằng
a)\(n\cdot\left(n^2+1\right)\cdot\left(n^2+4\right)\)chia hết cho 5
b)\(9\cdot10^n+18\)chia hết cho 27 với mọi n thuộc N
2)Nếu n không chia hết cho 4 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5
3)Tìm số tự nhiên n để \(3^n+63\)chia hết cho 72
Chứng minh rằng: \(A=\left(2^n-1\right)\left(2^n+1\right)\) chia hết cho 3 với mọi số tự nhiên n
\(A=\left(2^n-1\right)\left(2^n+1\right)\)
\(=\left(2^n-1\right)\left(2+1\right)\left(2^n-2^{n-1}+2^{n-2}-...-2+1\right)\)
\(=\left(2^n-1\right)3\left(2^n-2^{n-1}+2^{n-2}-...-2+1\right)⋮3\forall n\in N\)
Vậy \(A⋮3\forall n\in N\)
CMR: \(A=\left(2^n-1\right)\left(2^n+1\right)\) chia hết cho 3 với mọi số tự nhiên n
Chứng tỏ rằng với mọi số tự nhiên \(n\) thì tích \(\left(n+3\right)\left(n+6\right)\) chia hết cho 2 ?
Ta xét hai trường hợp
Nếu n chia hết cho 2 \(\Rightarrow n=2k\left(k\in n\right)\)
\(\Rightarrow\left(n+3\right)\left(n+6\right)=\left(2k+3\right)\left(2k+6\right)\)
\(=2k.2k+2k.6+3.2k+3.6\)
\(=2k^2+2k.6+2k.3+2.9\)
\(=2\left(k^2+6k+3k+9\right)⋮2\)
Nếu n chia cho 2 dư 1 \(\Rightarrow n=2k+1\)
\(\Rightarrow\left(2k+1+3\right)\left(2k+1+6\right)=\left(2k+4\right)\left(2k+7\right)\)
\(=2k.2k+2k.7+2k.4+4.7\)
\(=2k^2+2k.7+2k.4+2.14=2\left(k^2+7k+4k+14\right)⋮2\)
Vậy \(\left(n+3\right)\left(n+6\right)⋮2\left(n\in N\right)\)
cho \(A=\frac{7}{3}.\frac{37}{3^2}....\frac{6^{2n}+1}{3^{2n}}\)và \(B=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{3^2}\right)...\left(1+\frac{1}{3^{2n}}\right)\)với n thuộc N
a) Chứng minh: 5A-2B là số tự nhiên
b) Chứng minh với mọi số tự nhiên n khác 0 thì 5A-2B chia hết cho 45
Chứng tỏ rằng : \(\left(2^n+1\right)\left(2^n+2\right)\)chia hết cho 3 với mọi n là số tự nhiên
Cho B=\(\left(n^2+2n+5\right)^3-\left(n+1\right)^2+2012\)
chứng minh B chia hết cho 6 với mọi số tự nhiên n