CMR
Vs mọi số tự nhiên n, thì
\(n^3+\left(n+1\right)^3+\left(n+2\right)^3\)chia hết cho 9
Chứng minh rằng: \(A=\left(2^n-1\right)\left(2^n+1\right)\) chia hết cho 3 với mọi số tự nhiên n
CMR: \(A=\left(2^n-1\right)\left(2^n+1\right)\) chia hết cho 3 với mọi số tự nhiên n
Cho B=\(\left(n^2+2n+5\right)^3-\left(n+1\right)^2+2012\)
chứng minh B chia hết cho 6 với mọi số tự nhiên n
chứng minh với mọi số tự nhiên n thì \(\left(x^n-1\right)\left(x^{n+1}-1\right)\)chia hết cho \(\left(x+1\right)\left(x-1\right)^2\)
a/ Chứng minh ới mọi số nguyên \(n\)thì: \(\left(n^2-3n+1\right)\left(n+2\right)-n^3+2\)chia hết cho 5
b/ Chứng minh với mọi số nguyên \(n\)thì: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-10\right)\)chia hết cho 2
Chứng minh rằng với mọi số tự nhiên n thì \(\left(x^n-1\right)\left(x^{n+1}-1\right)\) chia hết cho \(\left(x+1\right)\left(x-1\right)^2\)
CMR với mọi số nguyên n thì:
a/ \(n^2\left(n+1\right)+2n\left(n+1\right)\) chia hết cho 6
b/ \(\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8
c/ \(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho 24
cmr
A=\(n^3+\left(n+1\right)^3+\left(n+2\right)^3\)chia hết cho 9 với mọi n là só nguyên