Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Văn Chí
Xem chi tiết
Lê Vương
23 tháng 1 2017 lúc 20:24

Giải:x2-2xy+y2+y2+2x-10y+2033=(x-y)2+2(x-y)+1+y2-8y+16+2016

=(x+y+1)2+(y-4)2+2016>=2016 Vì(x+y+1)2;(y-4)2 >=0 với mọi x;y

nên A min=2016 khi y=4;x=-5

Phạm Văn Chí
2 tháng 2 2017 lúc 11:49

hay thanks

Phạm Văn Chí
10 tháng 2 2017 lúc 12:29

Cho hình bình hành ABCD . Có M,N,P,Q,E,F lần lượt là trung điểm của AB,BC,CD,AD,AC,BD. Chứng minh MP,NQ,EF đồng quy

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 7 2019 lúc 1:53

A   =   x 2   +   2 y 2   –   2 x y   +   2 x   –   10 y     ⇔   A   =   x 2   +   y 2   +   1   –   2 x y   +   2 x   –   2 y   +   y 2   –   8 y   +   16   –   17     ⇔   A   =   ( x 2   +   y 2   +   12   –   2 . x . y   +   2 . x . 1   –   2 . y . 1 )   +   ( y 2   –   2 . 4 . y   +   4 2 )   –   17     ⇔   A   =   ( x   –   y   +   1 ) 2   +   ( y   –   4 ) 2   –   17

Vì  với mọi x; y nên A ≥ -17 với mọi x; y

=> A = -17 

⇔ x − y + 1 = 0 y − 4 = 0 ⇔ x = y − 1 y = 4 ⇔ x = 3 y = 4

Vậy A đạt giá trị nhỏ nhất là A = -17 tại   x = 3 y = 4

Đáp án cần chọn là: B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 3 2019 lúc 10:57

A   =   x 2   +   2 y 2   –   2 x y   +   2 x   –   10 y     ⇔   A   =   x 2   +   y 2   +   1   –   2 x y   +   2 x   –   2 y   +   y 2   –   8 y   +   16   –   17     ⇔   A   =   ( x 2   +   y 2   +   1 2   –   2 . x . y   +   2 . x . 1   –   2 . y . 1 )   +   ( y 2   –   2 . 4 . y   +   4 2 )   –   17     ⇔   A   =   ( x   –   y   +   1 ) 2   +   ( y   –   4 ) 2   –   17

 

Vì x - y + 1 2 ≥ 0 y - 4 2 ≥ 0  với mọi x, y nên A ≥ -17 với mọi x, y

=> A = -17 ó x - y + 1 = 0 y - 4 = 0 ó x = y - 1 y = 4 ó x = 3 y = 4  

Vậy A đạt giá trị nhỏ nhất là A = -17 tại   x = 3 y = 4

Đáp án cần chọn là: C

nmfuiyu
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 1 2022 lúc 14:05

\(A=\left[\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1\right]+\left(y^2-8y+16\right)-17\\ A=\left(x-y+1\right)^2+\left(y-4\right)^2-17\ge-17\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y-1=3\\y=4\end{matrix}\right.\)

Ngọc Nguyễn Ánh
Xem chi tiết
Huyền Anh
31 tháng 12 2016 lúc 17:15

A = x2 -2xy + 2y2+ 2x - 10y + 2033

= x2 - 2xy + y2 + y2 + 2x - 2y - 8y + 2033

= [(x2 - 2xy + y2) + 2 ( x - y) + 1]2 + (y2 - 8y + 16) + 2016

= [ (x - y)2 + 2(x - y) + 1]2 + (y - 4)2 + 2016

= (x - y + 1)2 + ( y - 4)2 + 2016 \(\ge\) 2016

=> Min của A = 2016 khi \(\left\{\begin{matrix}y-4=0\\x-y+1=0\end{matrix}\right.\) => \(\left\{\begin{matrix}y=4\\x-3=0\end{matrix}\right.\) => \(\left\{\begin{matrix}y=4\\x=3\end{matrix}\right.\)

Vậy Min của A = 2016 khi x = 3 và y = 4.

Nguyễn Thị Kim Huệ
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 9 2021 lúc 21:00

\(P=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+\left(y^2-8y+16\right)-16\\ P=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2-16\\ P=\left(x-y+1\right)^2+\left(y-4\right)^2-16\ge-16\)

\(P_{min}=-16\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Họ Và Tên
20 tháng 9 2021 lúc 21:02

\(P=\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-8y+16\right)-16\\ =\left(x-y+1\right)^2+\left(y-4\right)^2-16\\ \ge-16\)

dấu = xảy ra khi và chỉ khi y=4,x=3

le diep
Xem chi tiết
Phan Văn Hiếu
28 tháng 12 2016 lúc 10:09

\(A=x^2-2xy+y^2+2x-2y+1+y^2-8y+16+2016\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2+2016\)

\(A=\left(x-y+1\right)^2+\left(y-4\right)^2+2016\)

vì \(\left(x-y+1\right)^2\ge0\)

\(\left(y-4\right)^2\ge0\)

nên \(\left(x-y+1\right)^2+\left(y-4\right)^2+2016\ge2016\)

dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)

vậy gtnn của bt là 2016 khi x=3;y=4

đề này của sở giáo dục và đào tạo tỉnh hà nam

Ngân
27 tháng 12 2016 lúc 18:34

mk chiu ban ak di thi mk cug vao caau day nhưng ko biet lam

Hũ Thối Đậu
Xem chi tiết
Nguyễn Hoàng Minh
30 tháng 5 2022 lúc 9:30

\(A=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+y^2-8y+16-17\\ A=\left(x-y+1\right)^2+\left(y-4\right)^2-16\ge17\)

Vậy \(A_{min}=17\leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Nguyễn Hồng Hạnh
Xem chi tiết
Kaya Renger
7 tháng 5 2018 lúc 18:10

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự