Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
「Jane Rose 」
Xem chi tiết
Minh Hiếu
12 tháng 10 2023 lúc 11:43

a) Xét tứ giác ADHE có:

\(\left\{{}\begin{matrix}\widehat{A}=90^o\\\widehat{HDA}=90^o\\\widehat{HEA}=90^o\end{matrix}\right.\)

=> ADHE là h.c.n

b) Ta có:

\(\left\{{}\begin{matrix}\widehat{BID}=2\widehat{IHD}\\\widehat{IKE}=2\widehat{KCE}\end{matrix}\right.\)

mà \(\widehat{IHD}=\widehat{KCE}\)

=> \(\widehat{BID}=\widehat{IKE}\) mà 2 góc có vị trí đồng vị

=> DI//EK

=> DEKI là hình thang

Nguyễn Ngọc Thiện
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 11 2023 lúc 18:05

Sửa đề: K là trung điểm của CH

a: Xét tứ giác APHQ có

\(\widehat{APH}=\widehat{AQH}=\widehat{PAQ}=90^0\)

Do đó: APHQ là hình chữ nhật

b: ΔCQH vuông tại Q

mà QK là đường trung tuyến

nên \(QK=KH=KC=\dfrac{CH}{2}\)

Xét ΔKQH có KQ=KH

nên ΔKQH cân tại K

c: \(\widehat{KQP}=\widehat{KQH}+\widehat{PQH}\)

\(=\widehat{KHQ}+\widehat{PAH}\)

\(=\widehat{HAB}+\widehat{HBA}=90^0\)

=>KQ\(\perp\)QP(1)

ΔHPB vuông tại P

mà PI là đường trung tuyến

nên PI=IH=IB

=>ΔPIH cân tại I

\(\widehat{QPI}=\widehat{QPH}+\widehat{IPH}\)

\(=\widehat{QAH}+\widehat{IHP}\)

\(=\widehat{HAC}+\widehat{HCA}=90^0\)

=>QP\(\perp\)PI(2)

Từ (1) và (2) suy ra PI//QK

주석경귀
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 8 2021 lúc 19:19

a. Ta có tứ giác AIHK là hình chữ nhật (tứ giác có 3 góc vuông)

\(\Rightarrow\widehat{IKH}=\widehat{IAH}\) 

Mà \(\widehat{IAH}=\widehat{KCH}\) (cùng phụ \(\widehat{ABC}\))

\(\Rightarrow\widehat{IKH}=\widehat{KCH}\)

b.

Gọi D và E lần lượt là trung điểm IH và HK

\(\Rightarrow\) MD và NE lần lượt là đường trung bình các tam giác BIH và HKC

\(\Rightarrow\left\{{}\begin{matrix}MD\perp HI\\MD=\dfrac{1}{2}BI\end{matrix}\right.\) và \(\left\{{}\begin{matrix}NE\perp HK\\NE=\dfrac{1}{2}CK\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}S_{MIH}=\dfrac{1}{2}MD.IH=\dfrac{1}{2}.\dfrac{1}{2}BI.IH=\dfrac{1}{2}S_{BIH}\\S_{NHK}=\dfrac{1}{2}NE.HK=\dfrac{1}{2}.\dfrac{1}{2}CK.HK=\dfrac{1}{2}S_{HCK}\end{matrix}\right.\)

Đồng thời AIHK là hình chữ nhật \(\Rightarrow S_{IHK}=\dfrac{1}{2}S_{AIHK}\)

Do đó:

\(S_{MNKI}=S_{MIH}+S_{NHK}+S_{IHK}=\dfrac{1}{2}\left(S_{BIH}+S_{AIHK}+S_{HCK}\right)=\dfrac{1}{2}S_{ABC}\) (đpcm)

Nguyễn Việt Lâm
2 tháng 8 2021 lúc 19:20

undefined

Trần Dũng
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 1 2022 lúc 20:49

a: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)

Do đó: ADHE là hình chữ nhật

b: BC=10cm

AH=4,8cm

BH=3,6cm

CH=6,4cm

Nguyễn Huyền Trang
Xem chi tiết
Hongg Anhh
Xem chi tiết
nguyễn hà phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 8 2023 lúc 18:14

a: BC=BH+CH=25cm

Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC; AC^2=CH*BC; AH^2=HB*HC

\(AB=\sqrt{BH\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)

\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)

\(AH=\sqrt{HB\cdot HC}=12\left(cm\right)\)

b: Xét tứ giác ADHE có

góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

nguyễn hà phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 8 2023 lúc 18:15

a: BC=BH+CH=25cm

Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC; AC^2=CH*BC; AH^2=HB*HC

\(AB=\sqrt{BH\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)

\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)

\(AH=\sqrt{HB\cdot HC}=12\left(cm\right)\)

b: Xét tứ giác ADHE có

góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

Hồng Nhung
Xem chi tiết
Sana Kashimura
6 tháng 4 2019 lúc 17:54

a)Xét tứ giác ADHE có góc BAE=90 độ( tam giác ABC vuông tại A),góc ADH=90 độ(D là hình chiếu của H trên AB),góc AEH =90 độ(E là hình chiếu của H trên AC)=>ADHE là hcn

Sana Kashimura
6 tháng 4 2019 lúc 17:57

b) Xét tam giác ABH và tam giác CBAcó

Chung góc B,góc BAC=góc BHC

=>Tam giác ABH đồng dạng với tam giác CBA(gg)=>\(\frac{AB}{BH}=\frac{BC}{AB}\)=>AB2=BH.BC

Sana Kashimura
6 tháng 4 2019 lúc 18:06

b) Tam giác ABH đồng dạng với CBA=> góc BAH= góc ACB(1)

Vì ADHE là hcn=>AD//HE=>góc BAH= góc DEH(2)

Gọi O là giao điểm của hai đường chéo hcnADHE=>O là trung điểm của DE

Xét tam giác DHE vg tạiH có HO là đường trung tuyến =>HO=OE(=OD)=> tam giác HOE cân tại O=> góc DEH= góc AHE(3)

Từ 1 2 và 3=> GócDEH= góc ACB