Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Việt Trà
Xem chi tiết
Nuyễn Huy Tú
Xem chi tiết
Chu Mạnh Cường
22 tháng 11 2021 lúc 18:39

ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc 

Khách vãng lai đã xóa
Nguyễn Thị Chi
Xem chi tiết
Nguyễn Trần An Thanh
8 tháng 6 2016 lúc 20:53

a, Nếu p = 3k (k \(\in\) N ) và p là số nguyên tố

=> k = 1 => p = 3

=> p + 10 = 3 + 10 = 13 (Thỏa mãn là số nguyên tố)

=> p + 14 = 3 + 14 = 17 (Thỏa mãn là số nguyên tố)

Nếu p = 3k + 1

=> p + 14 = 3k + 1 + 14 =3k + 15 = 3(k + 5)  chia hết cho 3 (loại)

Nếu p = 3k + 2 

=> p + 10 = 3k + 2 + 10 = 3k + 12 = 3(k + 4)  chia hết cho 3 (loại)

Vậy p = 3 thì p + 10 và p + 14 đều là số nguyên tố

b, Nếu p = 3k

=> p + 6 = 3k + 6 = 3(k + 2) chia hết cho 3 (loại)

Nếu p = 3k + 1

=> p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k +1) chia hết cho 3 ( loại )

Nếu p = 3k + 2

=> k = 1 => p = 5

=> p + 2 = 5 + 2 = 7 (TM)

=> p + 6 = 5 + 6 = 11 (TM)

=>  p + 8 = 5 + 8 = 13 (TM)

Vậy p = 5 thì p + 2; p + 6 và p + 8 đều là số nguyên tố

 

nguyễn thanh dung
8 tháng 6 2016 lúc 20:42

A ) trước hết cần chú ý rằng mọi số tự nhiên đều viết được dưới 1 trong 3 dạng: 3k, 3k +1 hoặc 3k +2(với k là số tự nhiên) 
+) nếu p = 3k vì p là số nguyên tố nên k = 1 => p = 3 => p+10 = 13 là số nguyên tố; p+14 = 17 là số nguyên tố (1) 
+) nếu p = 3k +1 => p +14 = 3k+1+14 = 3k+15 = 3(k+5) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (2) 
+) Nếu p=3k+2 => p+10 = 3k+2+10 = 3k+12 = 3(k+4) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (3) 
từ (1), (2), (3) suy ra p=3 là giá trị cần tìm.

mK mới làm đc câu a thui !bạn thông cảm leuleu

Minh Hằng Đào
Xem chi tiết
Thu Trang Trần
22 tháng 1 2017 lúc 20:30

Xin lỗi tớ chỉ trả lời đucợ phần a mà cx ko biết có đúng không nhưng tớ học dạng này rồi

a)

+ Nếu p = 2 thì p + 10 = 12 là hợp số

                       p + 20 = 22 là hợp số

\(\Rightarrow\)Loại

+ Nếu p = 3 thì p + 10 = 13 là Số nguyên tố

                       p + 20 = 23 là số nguyên tố

\(\Rightarrow\) Chọn

+ Nếu p > 3 thì p có dạng 3k + 1; 3k +2 ( k \(\in\)N* )

- Với p = 3k + 1 thì p + 20 = 3k +1 + 20 = 3k+21. Mà 21 \(⋮\)\(\Rightarrow\)21 là hợp số

- Với p = 3k +2 thì p + 10 = 3k + 2 + 10 = 3k + 12. Mà 12 \(⋮\)2,6,3,4 \(\Rightarrow\)12 là hợp số

\(\Rightarrow\) Loại

Vậy, p = 3

caoductri
22 tháng 1 2017 lúc 20:18

123 nha

caoductri
22 tháng 1 2017 lúc 20:18

123 nha

Đào Thị Phương Lan
Xem chi tiết
Nguyễn Thanh Tùng
26 tháng 2 2017 lúc 16:28

tớ chỉ biết làm phần d thôi

            Vì p là số nguyên tố nên \(\Rightarrow\) p có dạng 3k,3k+1,3k+2

        +) Nếu p =3k \(\Rightarrow\)p =3 thì p+2=3+2=5

                                                  p+4=3+4=7 là số nguyên tố (chọn)

        +) Nếu p=3k+1 \(\Rightarrow\) p+2 =(3k+3) \(⋮\)3 là hợp số (loại)

        +) Nếu p=3k+2 \(\Rightarrow\)p+4=(3k+6)\(⋮\)3 là hợp số (loại)

                            Vậy số cần tìm là 3

alibaba nguyễn
26 tháng 2 2017 lúc 20:42

Chỉ cần 1 cách của nhuyễn thanh tùng có thể giải quyết cả 4 câu nên 3 câu còn lại e tự làm tiếp nhé

Nguyễn Thanh Tùng
26 tháng 2 2017 lúc 21:51

a) +) Ta xét p=2 \(\Rightarrow\)p+10 =2+10=12   là hợp số trái với đề bài (loại)

                                p+14=2+14=16    là hợp số trái với đề bài (loại)

    +) Ta xét p=3\(\Rightarrow\)p+10=3+10=13    là số nguyên tố (chọn) 

                                p+14=3+14=17    là số nguyên tố (chọn)

    +) Nếu p=3k+1 thì p+10=3k+1+10=3k+11

                                p+14=3k+1+14=(3k+15)\(⋮\)3 là hợp số (loại)

     +) Nếu p=3k+2 thì p+10=3k+2+10 số (loại)

                               \(\Rightarrow\)(3k+12)\(⋮\)3 là hợp số (loại)

                                     Vậy p=3

NHỚ K NHA 

                              

Riin
Xem chi tiết
Lê Trung Hiếu
11 tháng 8 2018 lúc 20:03

xét p = 2 =>p+10 là hợp số =>ko tm

xét p = 3=>p+10=13,p+14=17 tm

xét p>3 => p=3k+1,p=3k+2

- nếu p = 3k+1 thì p+14 = 3k+15 chia hết cho 3 mà 3k+1>3=>p=3k+1 ko tm

- nếu p=3k+2 thì p+10 = 3k+12 chia hết cho 3 mà 3k+2>3=>p=3k+2 ko tm

Shinran
11 tháng 8 2018 lúc 20:07

a) P+10 và P+14

+ Nếu P=2=> P+10=12; P+14=16(loại)

- Nếu P=3=> P+10=13; P+14=17(tm)

Nếu P>3=> P có dạng 3k;3k+1;3k+2

+Với P=3k mà P>3=> k>1=> P là hợp số ( loại)

+Với P=3k+1=> P+14=3k+1+14=3k+15 chia hết cho 3( loại)

+Với P=3k+2=> P+10=3k+2+10=3k+12 chia hết cho 3( loại)

Vậy với P=3 thì P+10 và P+14 là số nguyên tố.

Các phần còn lại bn làm tương tự

Thấy đúng thì tk nha, thanks nhìu ^_^

Trần Kim Yến
Xem chi tiết
Ice
25 tháng 1 2017 lúc 21:22

a, Ta có: p = 2 => p + 10 = 12 là hợp số

              p = 3 => p + 10 = 13

                            p + 20 = 23

Vậy p = 3 thỏa mãn yêu cầu

Giả sử p > 3 thì p sẽ có dạng:

p = 3k + 1 hoặc p = 3k + 2

  Với p = 3k + 1 thì p + 20 = 3k + 1 + 20 = 3k + 21 \(⋮\)3

=> p + 20 là hợp số

  Với p = 3k + 2 thì p + 10 = 3k + 2 + 10 = 3k + 12 \(⋮\)3

=> p + 10 là hợp số

Do đó: với p = 3 thỏa mãn yêu cầu đề bài

b, Ta có: p = 2 => p + 2 = 4 là hợp số

              p = 3 => p + 6 = 9 là hợp số

              p = 5 => p + 2 = 7

                            p + 6 = 11

                            p + 8 = 13

                            p + 14 = 19

Vậy p = 5 thỏa mãn

Giả sử p > 5 thì p sẽ có dạng:

p = 5k + 1; p = 5k + 2; p = 5k + 3; p = 5k + 4

  Với p = 5k + 1 thì: p + 14 = 5k + 1 + 14 = 5k + 15 \(⋮\)5

=> p + 14 là hợp số

  Với p = 5k + 2 thì: p + 8 = 5k + 2 + 8 = 5k + 10 \(⋮\)5

=> p + 8 là hợp số

  Với p = 5k + 3 thì: p + 2 = 5k + 3 + 2 = 5k + 5 \(⋮\)5

=> p + 2 là hợp số

  Với p = 5k + 4 thì: p + 6 = 5k + 4 + 6 = 5k + 10 \(⋮\)5

=> p + 6 là hợp số

Do đó: với p = 5 thỏa mãn yêu cầu bài toán

SKTS_BFON
25 tháng 1 2017 lúc 21:08

a, p=3

b, p=5

đúng mà, bạn tk mk đi.

Trần Kim Yến
25 tháng 1 2017 lúc 21:12

Các bạn giải rõ ràng hộ mình nha

Lê Minh
Xem chi tiết
.
30 tháng 11 2019 lúc 21:27

a)+) Với p = 2 => p + 10 = 2 + 10 = 12

Vì 12 là hợp số 

=> p + 10 là hợp số

=> p = 2  (loại)  (1)

+) Với p = 3 => p + 10 = 3 + 10 = 13 và  p  + 14 =3 + 14 = 17 

Vì 13 và 17 đều là các số nguyên tố

=> p = 3  ( thỏa mãn )  (2)

Với p>3 => p có dạng : 3k +1 ; 3k+2  (k thuộc N)

+) Với p = 3k + 1 => p + 14 = 3k+15 chia hết cho 3

Mà p + 14 là hợp số => 3k + 15 là hợp số 

=> p =3k +1  (loại)  (3)

+) Với p =3k + 2 => p+ 10 =3k +12 chia hết cho 3

Mà p + 10 >3 => 3k+12 >3 => 3k+12 là hợp số

=> p=3k +2  (loại)

Từ (1),(2),(3),(4)

=>p=3

Vậy p=3

Khách vãng lai đã xóa
.
30 tháng 11 2019 lúc 21:30

Dòng thứ 8 là k thuộc N*

Khách vãng lai đã xóa
nguyen lan anh
Xem chi tiết
Dragon
11 tháng 11 2015 lúc 20:06

vi p la so nguyen to

đặt p = có dạng 3k, 3k+1, 3k+2

Thay vào

+>p+10=3k+10

p+14=3k+14(chọn)

+>p+10=3k+1+10=3k+11

p+14=3k+1+14=3k+15=>loại

+>p+10=3k+2+10=3k+12=>loại

Từ các bt trên suy ra snt cần tìm là 3

Các câu sau làm tuong tu