cho tam gicas ABC vuông tại A kẻ đường phân giác AD có g là trọng tâm biết AB và AC tìm GD
cho tam giác ABC cân tại A có AD là đường phân giác . Gọi G là trọng tâm của tam giác ABC . Tính GD biết AB=13cm, BC=10cm.
xét tam giác ABD và tam giác ACD có:
AB=AC
AD(chung)
BAD=CAD(gt)
suy ra tam giác ABD=ACD(c.g.c)
suy ra _ADB=ADC mà ADC+ADB=180 suy ra ADC=ADB=180/2=90
|
-DB=DC=1/2BC=5cm
vì AD là 1 đường trung tuyến của tam giác ABC, G là trọng tâm của tam giác ABC suy ra GD=1/3AD
ta có:\(AD^2=AB^2-BD^2=13^2-5^2=169-25=144\)
\(AD=\sqrt{144}=12\left(cm\right)\)
GD=1/3AD=1/3x12=4(cm)
Cho tam giác ABC có đường trung tuyến AD từ D kẻ DE // AB (e thuộc AC)
Biết AE + ED và BE cắt AD tại G Chứng minh rằng a)Tam giác ABC cân tại A b) G là trọng tâm của tam giác ABC
Đề bài phải sửa thành AE=ED
a/
Xét tg ABC
DE//AB (gt)
BD=CD (gt)
=> AE=CE (trong tg đường thẳng đi qua trung điểm 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại) (1)
Mà DE=AE (gt) (2)
Từ (1) và (2) => DE=AE=CE (3)
Ta có
BD=CD (gt); AE=CE (cmt) => DE là đường trung bình của tg ABC
\(\Rightarrow DE=\dfrac{AB}{2}\) (4)
Từ (3) và (4) \(\Rightarrow DE=AE=CE=\dfrac{AB}{2}\)
\(\Rightarrow AE+CE=AB\) Mà \(AE+CE=AC\Rightarrow AB=AC\)
=> tg ABC cân tại A
b/
Xét tg ABC có
AD là trung tuyến (gt)
AE=CE (cmt) => BE là trung tuyến
=> G là trọng tâm của tg ABC (Trong tg 3 đường trung tuyến đồng quy tại 1 điểm gọi là trọng tâm của tg)
a) Ta có : AE=ED
⇒ Δ EAD cân tại E
⇒ Góc ADE = Góc EAD
mà Góc ADE = Góc DAB (DE\(//\) AB ⇒ 2 góc bằng nhau ở vị trí so le trong)
⇒ Góc EAD = Góc DAB
⇒ AD là phân giác góc BAC
mà AD là trung tuyến Δ ABC (đề bài)
⇒ Δ ABC cân tại A
b) Ta có Góc EDC = Góc ABC (DE\(//\) AB,góc đồng vị)
mà Góc ABC = Góc ACB
⇒ Góc ACB = Góc EDC
⇒ Δ EDC cân tại E
⇒ ED=EC
mà ED=AE (đề bài)
⇒ AE=EC
⇒ BE là trung tuyến Δ ABC
mà AD là trung tuyến Δ ABC (đề bài)
BE cắt AD tại G (đề bài)
⇒ G là trọng tâm Δ ABC
Bài 1 : Cho tam giác DEF cân tại D có đường trug tuyến DI ( I thuộc EF ) . Biết DE = 10cm , EF = 12cm
a ) Tính DI
b ) Gọi G là trọng tâm của tâm giác DEF .Tính GD
Bài 2 : Cho tam giác ABC vuông tại A . Tia phân giác của góc ABC cắt AC tại D . Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K
a ) CM : AD = DH
b ) So sánh độ dài AD và DC
c ) CM : Tam giác KBC là tam giác cân
Bạn nào giải đúng và nhanh thì mk sẽ tik cho nha
2)
a) Xét 2 tam giác DHB và tam giác DAB có:
\(\widehat{DAB}=\widehat{DHB}\)
DB là cạnh chung
\(\widehat{ABD}=\widehat{HBD}\)
\(\Rightarrow\Delta DAB=\Delta DHB\left(g-c-g\right)\)
\(\Rightarrow AD=DH\)
b) AB=BH (\(\Delta ADB=\Delta DBH\)
=> tam giác ABH cân tại B ( DB là đường p/g; đường trung tuyến )
=> \(\widehat{KDB}=\widehat{CDB}\)( \(\widehat{CDH}=\widehat{KDA}\)đối đỉnh)
=> \(\widehat{HDB}=\widehat{ADB}\)(theo câu a)
\(\Rightarrow\Delta KDA=\Delta CDH\left(g-c-g\right)\Rightarrow CH=KA\)
=> cạnh CD> cạnh AD (vì CD là cạnh huyền
c) HB=BA và CH=KA
=> KB=BC => tam giác KBC cân tại B
Cho tam giác ABC vuông tại A, kẻ phân giác AD của góc BAC (D thuộc BC)
Cho tam giác ABC vuông tại A, kẻ phân giác AD của góc BAC (D thuộc BC). Hạ DE vuông góc với AB (E thuộc AB), DG vuông góc với AC (G thuộc AC). So sánh GC và GD
Cho tam giác ABC vuông tại A, phân giác BD. Gọi G là trọng tâm của tam giác.
Tính góc B và C của tam giác ABC, biết GD ⊥ AC.
Cho tam giác ABC vuông tại A, trung tuyến AD, trọng tâm G
a,Cho biết \(\frac{AB}{AC}=\frac{3}{4}\)và AD=5 tính diện tích tam giác ABC
b, Qua G kẻ đường thẳng cắt AB, AC lần lượt tại M,N. Chứng minh rằng \(\frac{AB}{AM}+\frac{AC}{AN}=3\)
c,Kẻ các đường trung tuyến BE, CF của tam giác ABC Chứng minh rằng \(\sqrt{\frac{GA}{GD}}+\sqrt{\frac{GB}{GE}}+\sqrt{\frac{GC}{GF}}=\frac{3\sqrt{2}}{2}\)
Cho tam giác ABC vuông tại A, phân giác BD của góc ABC. G là trọng tâm tam giác ABC. Biết GD vuông góc với AC. Tính góc C
Cho tam giác ABC vuông tại A có AB=5cm;AC=12cm.Tia phân giác của góc ABC cắt AC tại D.Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K. Chứng minh tam giác BKC cân và B,G,D thẳng hàng ( với G là trọng tâm của tam giác BKC.
Cho tam giác ABC vuông tại A, phân giác BD, trọng tâm G. Biết GD vuông góc với AC. Tính góc C
Gọi tên các trung tuyến của tam giác ABC là AM, BN
AB/GD⇒AD/DN=BG/GN=2AB/GD⇒AD/DN=BG/GN=2. Mà AN=NC⇒DC=2.AD/AN=NC⇒DC=2.AD
Lại có BC/AB=DC/DA+BC/AB=DC/DA => BC=2.AB => Góc C= 30o