cho ngũ giác đều ABCDE.hai đường chéo AC và BE cắt nhau tại điểm K
Chứng minh ; a) Tứ giác ACDE là hình thang cân
b) Tứ giác CDEK là hình thoi
cần câu b) ạ !
Cho ngũ giác đều ABCDE. Hai đường chéo AC và BE cắt nhau tại điểm K. Chứng minh tứ giác ACDE là hình thang cân và CDEK là hình thoi.
Số đo mỗi góc của ngũ giác đều là 1080.
Ta có tam giác ABC cân tại B
⇒ A 1 ^ = C 1 ^ = ( 180 0 − 108 0 ) : 2 = 36 0 ⇒ E A C ^ = D C A ^ (1)
Chứng minh tương tự ta được:
C 3 ^ = E ^ 1 = 36 0 ⇒ C 2 ^ = 36 0
Có C 2 ^ = E 1 ^ = 36 0 ⇒ E D / / A C (2)
Từ (1) và (2), suy ra ACDE là hình thang cân (ĐPCM)
(Các khác: Có thể chứng minh hình thang ACDE có hai đường chéo bằng nhau)
* Chứng minh tương tự ta có J E F ^ = E F G ^ = F G H ^ = G H I ^ = H I J ^ = I J E ^ .
Vậy tứ giác CDEK là hình bình hành
mà CD = DE, suy ra hình bình hành CDEK là hình thoi (ĐPCM)
Ngũ giác đều ABCDE có các đường chéo AC và BE cắt nhau tại K. CMR CKED là hình thoi.
Giúp mk với mọi người >.<
Giải:
Góc của ngũ giác đều là \(\frac{\left(5-2\right).180^0}{5}=108^0\)
Xét \(\Delta ABC\)cân tại B có \(\widehat{ABC}=108^0\Rightarrow\widehat{A_1}=\widehat{C_1}=\frac{180^0-108^0}{2}=36^0\)
Do đó: \(\widehat{A_2}=\widehat{C_2}=108^0-36^0=72^0\)
Ta có: \(\widehat{C_2}+\widehat{D}=72^0+108^0=180^0\)mà 2 góc này ở vị trí trong cùng phía nên AC // DE.
Chứng minh tương tự như trên, BE // CD. Do đó CKED là hình bình hành.
Mà CD=DE nên CKED là hình thoi.
Mình làm mệt quá, k mk nha!
Cho hình bình hành ABCD. Trên đường chéo AC lấy hai điểm E và F sao cho AE = EF = FC.
a) Tứ giác BEDF là hình gì? Vì sao?
b) Tia DF cắt BC tại M. Chứng minh: DF = 2FM.
c) Tia BE cắt AD tại N, hai đường chéo AC và BD cắt nhau tại O. Chứng minh: M đối xứng với N qua điểm O.
a: Xét ΔAEB và ΔCFD có
AE=CF
\(\widehat{EAB}=\widehat{FCD}\)
AB=CD
Do đó: ΔAEB=ΔCFD
Suy ra:BE=FD
Xét ΔADE và ΔCBF có
AE=CF
\(\widehat{DAE}=\widehat{BCF}\)
AE=CF
Do đó: ΔADE=ΔCBF
Suy ra: DE=BF
Xét tứ giác BEDF có
BE=DF
DE=BF
Do đó: BEDF là hình bình hành
a) Tính tổng các góc trong của đa giác 5 cạnh.
b) Cho ngũ giác đều ABCDE. Gọi F là giao điểm hai đường chéo AC và BE.
Chứng minh tứ giác CFED là hình thoi.
cj kham khảo
a) Nối AC; AD
Ngũ giác ABCDE được chia thành 3 tam giác: ΔABC, ΔACD, ΔADE. Tổng các góc trong của mỗi tam giác bằng 1800
Tổng các góc trong của ngũ giác ABCDE là 1800. 3 = 5400
b) Vì ABCDE là ngũ giác đều nên
\(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}=\widehat{E}=\frac{540^0}{5}=108^0\)
Mặt khác ΔABC cân tại B nên
\(\widehat{BAC}+\widehat{BCA}=\frac{180^0-108^0}{2}=36^0\)
\(\Rightarrow\widehat{CAE}=\widehat{ACD}=108^0-36^0=72^0\)
\(\Rightarrow\widehat{EDC}+\widehat{ADC}=108^0+72^2=180^0\)
Suy ra ED // AC hay ED // CF.
Chứng minh tương tự ta có EF // CD
Mặt khác ED = DC (gt)
nên tứ giác CEFD là hình thoi.
Cho hình chữ nhật ABCD hai đường chéo AC và BD cắt nhau tại O. Lấy E là điểm bất kì thuộc đoạn OA. Đường thẳng BE cắt AD tại M .Qua D vẽ một đường thẳng song song BM, đường thẳng này cắt BC tại F và AC tại N.
a. Tứ giác BMDF là hình gì? vì sao?
b. Chứng minh tam giác ABC =tam giác ODN.
c. Qua E vẽ một đường thẳng song song BD, đường thẳng này cắt AC tại H ,cắt CD kéo dài tại I. Gọi O là trung điểm IH. Chứng minh OO'// DF
d. Gọi K là điểm đối xứng với D qua A. chứng minh K,B, M thẳng hàng
Cho hình chữ nhật ABCD hai đường chéo AC và BD cắt nhau tại O. Lấy E là điểm bất kì thuộc đoạn OA. Đường thẳng BE cắt AD tại M .Qua D vẽ một đường thẳng song song BM, đường thẳng này cắt BC tại F và AC tại N.
a. Tứ giác BMDF là hình gì? vì sao?
b. Chứng minh tam giác ABC =tam giác ODN.
c. Qua E vẽ một đường thẳng song song BD, đường thẳng này cắt AC tại H ,cắt CD kéo dài tại I. Gọi O là trung điểm IH. Chứng minh OO'// DF
d. Gọi K là điểm đối xứng với D qua A. chứng minh K,B, M thẳng hàng
Cho tam giác ABC. E; D lần lượt là trung điểm của AC và BC. Hai đường chéo BE và AD cắt nhau tại I. a, So sánh diện tích tam giác AIE và BDI. b, Kéo dài CI cắt AB tại K. Chứng tỏ KA=KB
Cho hình thoi ABCD, gọi O là giao điểm của hai đường chéo. Vẽ đường thẳng qua và song với AC, vẽ đường thẳng qua C và song song với BD, hai đường chéo này cắt nhau tại K a) Chứng minh rằng tứ giác OBKC là hình chữ nhật b) Chứng minh tứ giác ABKO là hình bình hành c) Tìm điều kiện về hai đường chéo của hình thoi ABCD để tứ giác OBKC kà hình vuông
THAM KHẢO
a) BK//OC, CK//OB.
Mà OB ^OC Þ OBKC là hình chữ nhật.
b)ABCD là hình thoi nên AB = BC. OBKC là hình chữ nhật nên KO =BC.
Þ KO = BC Þ ĐPCM.
c) nếu OBKC là hình vuông thì OB = OC Þ BD = AC. Vậy ABCD là hình vuông
Cho ngũ giác lồi ABCDE nội tiếp đường tròn (O) có CD//BE. Hai đường chéo CE và BD cắt nhau tại P. Điểm M thuộc đoạn thẳng BE sao cho góc MAB = góc PAE. Điểm K thuộc đường thẳng AC sao cho MK//AD. Điểm L thuộc đường thẳng AD sao cho ML//AC. Đường tròn ngoại tiếp tam giác BKC lần lượt cắt BD, CE tại Q, S.
a) CMR: 3 điểm K,M,Q thẳng hàng ?
b) Đường tròn ngoại tiếp tam giác LDE cắt BD,CE tại T,R. CMR: 5 điểm M,N,Q,R,T cùng thuộc 1 đường tròn ?
c) CMR: Đường tròn (PQR) tiếp xúc với đường tròn (O) ?
a) Ta thấy: Tứ giác BKQC nội tiếp đường tròn => ^CKQ = ^CBQ (2 góc nội tiếp cùng chắn cung CQ) (1)
Ta có: MK // AD => ^CKM = ^CAD (Đồng vị) . Mà ^CAD = ^CBD (Cùng chắn cung CD) => ^CKM = ^CBD (2)
Từ (1) và (2) => ^CKQ = ^CKM => 2 tia KQ và KM trùng nhau => 3 điểm K,M,Q thẳng hàng (đpcm).
b) Sửa đề: "5 điểm M,S,Q,R,T thẳng hàng ?"
Chứng minh tương tự câu a, ta có: 3 điểm L,M,R thẳng hàng => ^RMQ = ^KML (Đối đỉnh)
Tứ giác AKML là hình bình hành => ^KML = ^KAL = ^CAD. Do đó; ^RMQ = ^CAD (3)
Lại có: ^RTQ = ^RED (Cùng chắn cung RD); ^RED = ^CED = ^CAD => ^RTQ = ^CAD (4)
Từ (3) và (4) => ^RMQ = ^RTQ => Tứ giác RTMQ nội tiếp hay 4 điểm R,T,M,Q thuộc 1 đường tròn (*)
Mặt khác: ^TRS = ^BDE = ^BCE = ^TQS => Tứ giác TRQS nội tiếp hay 4 điểm T,R,Q,S thuộc 1 đường tròn (**)
Từ (*) và (**) => 5 điểm M,S,Q,R,T cùng thuộc 1 đường tròn (đpcm).
c) Giả sử S là 1 điểm chung của (PQR) và (O). Kẻ tia tiếp tuyến Fx của (O). Ta chứng minh Fx cũng là tiếp tuyến của (PQR)
Thật vậy: Gọi giao điểm thứ hai của AF với (PQR) là N. Kéo dài tia AP cắt (O) tại I.
Do L,M,R thẳng hàng; ML // AC => MR // AC => ^RMF = ^CAF (Đồng vị). Mà ^CAF = ^REF
Nên ^RMF = ^REF => Tứ giác EMRF nội tiếp => ^RFM = ^REM hay ^RFN = ^REM
Ta thấy: ^RFN = ^RPN => ^REM = ^RPN. Do 2 góc này đồng vị nên PN // EM hoặc PN // BE (5)
Xét đường tròn (O): 2 dây CD // BE => (BC=(DE => ^BAC = ^EAD
Có ^MAB = ^PAE => ^MAB - ^BAC = ^PAE - ^EAD => ^CAF = ^DAI => (CF=(ID
Xét (O): (CF = (ID, F và I nằm cùng phía so với CD => IF // CD => IF // BE (6)
Từ (5) và (6) => PN // IF => ^FIA = ^NPA (Đồng vị)
Dễ dàng c/m được PF = PI (\(\Delta\)PCF = \(\Delta\)PDI) => ^PIF = ^PFI hay ^FIA = ^PFI
Ta lại có: ^PFx = ^PFI + ^IFx = ^FIA + ^FAI = ^NPA + ^FAI = ^NPA + ^NAP = ^FNP (Góc ngoài)
Mà ^FNP = 1/2.Sđ(FP => ^PFx = 1/2.Sđ(FP => Fx là tia tiếp tuyến của đường tròn (PQR) => Đpcm.
Sorry, "5 điểm M,S,Q,R,T cùng nằm trên 1 đường tròn", mik gõ lộn :(