cho 3 số a/2016=b/2017=c/2018. Chứng minh rằng (a-c)^3=8(a-b)^2*(a-b)
Cho ba số a,b,c thỏa mãn\(\dfrac{a}{2016}=\dfrac{b}{2017}=\dfrac{c}{2018}\)
Chứng minh rằng: (a - c)3 = 8(a - b)2 . (b - c)
Đặt a/2016 = b/2017 = c/2018 = k => a=2016k
b=2017k
c=2018k
Ta có (a-c)^3=( 2016k-2018k)^3 = (k(2016-2018))^3 = (k(-2))^3 (1)
Ta lại có 8(a-b)^2*(b-c)= 8(2016k-2017k)^2*(2017k-2018k) = 8(k(2016-2017)^2*(k(2017-2018) = 2^3*(k(-1))^2*(k(-1)) = 2^3*k^2*1*k*(-1) = k^3*(-2)^3 = (k(-2))^3 (2)
Từ (1) và (2) suy ra (a-c0^3 = 8(a-b)^2*(b-c)
Nhớ tick mik nha
Bài 1
Cho 3 số a, b, c thỏa mãn \(\frac{a}{2016}\)=\(\frac{b}{2017}\)=\(\frac{c}{2018}\)
Chứng minh rằng: ( a - c )3 = 8( a - b )2 . ( b - c )
Bài 2
Cho A = 1 + 2 + 22 + ... + 22017 và B = 22018. So sánh A và B
Câu 2: A = \(^{1+2+2^2+2^{ }^3+...+2^{2017}}\)
2A = \(2+2^2+2^3+...+2^{2018}\)
Suy ra 2A - A =\(2^{2018}-1\) Do đó A < B
1. Đặt \(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}=t\Rightarrow a=2016t,b=2017t,c=2018t\)
\(\left(a-c\right)^3=\left(2016t-2018t\right)^3=\left(-2t\right)^3=-8t^3\)
\(8\left(a-b\right)^2\left(b-c\right)=8\left(2016t-2017t\right)^2\left(2017t-2018t\right)=8.\left(-t\right)^2.\left(-t\right)=-8t^3\)
Vậy \(\left(a-c\right)^3=8\left(a-b\right)^2\left(b-c\right)\)
cho a,b,c là các số nguyên . Chứng minh rằng nếu a^2016 + b^2017 + c^2018 chia hết cho 6 thì a^2018 + b^2019 + c^2020 cũng chia hết cho 6.
Giúp mk với! :)
cho a,b,c thỏa mãn : a/2016=b=2017=c/2018
CMR: ( a-c )^3=8(a-b)^2(b-c)
\(\dfrac{a}{2016}=\dfrac{b}{2017}=\dfrac{c}{2018}=\dfrac{a-c}{2016-2018}=\dfrac{a-b}{2016-2017}=\dfrac{b-c}{2017-2018}\)
\(\rightarrow\dfrac{a-c}{-2}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}\)
\(\rightarrow a-c=2\cdot\left(a-b\right)=2\cdot\left(b-c\right)\)
\(\rightarrow\left(a-c\right)^3=\left[2\cdot\left(a-b\right)\right]^2\cdot2\cdot\left(b-c\right)\)
\(\Rightarrow\left(a-c\right)^3=8\cdot\left(a-b\right)^2\cdot\left(b-c\right)\)
Cho 3 số a ,b,c thỏa mãn a/2015=b/2016=c/2017
Chứng minh rằng: a*(a-b)*(b-c) = (c-a)2
giải giúp mình nha <3
Cho a,b,c là các số nguyên. Chứng minh rằng: nếu \(a^{2014}+b^{2015}+c^{2016}\) chia hết cho 6 thì \(a^{2016}+b^{2017}+c^{2018}\) chia hết cho 6.
ta có a2014 và a2016 có cùng số dư khi chia cho 2 và 3 nên a2014 và a2016 có cùng số dư khi chia cho 6.
ta có b2015 và b2017 có cùng số dư khi chia cho 2 và 3 nên b2015 và b2017 có cùng số dư khi chia cho 6.
ta có c2016 và c2018 có cùng số dư khi chia cho 2 và 3 nên c2016 và c2018 có cùng số dư khi chia cho 6.
do đó a2014 + b2015 + c2016 và a2016 + b2017 + c2018 có cùng số dư khi chia cho 6 hay a2014 + b2015 + c2016 chia hết cho 6 thì a2016 + b2017 + c2018 cũng chia hết cho 6.
Cho 3 số a,b,c thỏa mãn:\(a+b+c=1;a^2+b^2+c^2=1;a^3+b^3+c^3=1\).Chứng minh rằng \(a^{2017}+b^{2018}+c^{2019}=1.\)
một số mũ 2 đều lớn hơn hoặc 0
mà cả 3 số cộng lại bằng 1
=> có 2 số bằng 0 và 1 số bằng 1 mới cho kết quả bằng 1
mà số 0 mũ b.n cx bằng 0, số 1 mũ b.n cx bằng 1
=> a2017+b2018+c2019=1
mk ko chắc lắm, nghĩ sao viết vậy thôi
cho 3 số thực a,b,c thỏa mãn a/2015=b/2016=c/2017
chứng minh rằng: 4(a-b)(b-c)=(c-a)2
đặt \(\frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}=k\)
=> a = 2015k
b = 2016k
c = 2017k
ta có:
4(a-b)(b-c) = 4(2015k-2016k)(2016k-2017k) = 4(-k)(-k) = 4k2 (1)
(c-a)2 = (2017k - 2015k)2 = (2k)2 = 4k2 (2)
từ 1 và 2 => 4(a-b)(b-c) = (c-a)2 (đpcm)
Áp dụng t/c của dãy tỉ số = nhau ta có:
\(\frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}\)\(=\frac{a-b}{2015-2016}=\)\(\frac{b-c}{2016-2017}=\frac{c-a}{2017-2015}\)
\(\Rightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)
\(\Rightarrow\frac{\left(a-b\right)\left(b-c\right)}{1}=\)\(\left(\frac{c-a}{2}\right)^2=\)\(\frac{\left(c-a\right)^2}{4}\)
=> 4(a - b)(b - c) = (c - a)2
1.Cho đa thức f(x)=ax2 + bx + c với a, b, c là các hệ số nguyên. Chứng minh: f(x) + f(-x) ⋮ 2 với mọi số nguyên x .
2.Cho đa thức P(x)=ax+b (a, b ∈ Z;a ≠0). Chứng minh rằng:/P(2018) - P(1)/ ≥ 2017
3.Cho đa thức f(x) =2x2 + 3x +1.Chứng tỏ f(2n) - f(n) ⋮ 3.
4.Cho đa thức f(x) = 5x+1. Với 2 số a và b (a<b).
5.Cho đa thức f(x) = ax + b với a≠0, a ϵ Z. Chứng tỏ rằng /f (2017) - f(1)/ ≥ 2016.
giúp mình với!!!