Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Huỳnh Minh Chương
Xem chi tiết
Đinh Mai Thu
Xem chi tiết
Nguyễn Hoàng Nguyên
20 tháng 4 2016 lúc 14:58

Ta có: M=\(\frac{1}{1.2.3}\) +\(\frac{1}{2.3.4}\) +\(\frac{1}{3.4.5}\) +...+\(\frac{1}{100.101.102}\) 

         M=2.(\(\frac{1}{1.2.3}\) +\(\frac{1}{2.3.4}\) +\(\frac{1}{3.4.5}\) +...+\(\frac{1}{100.101.102}\) ).\(\frac{1}{2}\)

          M=(\(\frac{2}{1.2.3}\) +\(\frac{2}{2.3.4}\) +\(\frac{2}{3.4.5}\) +...+\(\frac{2}{100.101.102}\) ).\(\frac{1}{2}\)

          M=(\(\frac{1}{1.2}\) -\(\frac{1}{2.3}\) +\(\frac{1}{2.3}\) -\(\frac{1}{3.4}\) +\(\frac{1}{3.4}\) -\(\frac{1}{4.5}+...+\frac{1}{100.101}-\frac{1}{101.102}\) ).\(\frac{1}{2}\)

          M=( \(\frac{1}{1.2}-\frac{1}{101.102}\)).\(\frac{1}{2}\)

          Mà \(\frac{1}{1.2}-\frac{1}{101.102}<1\)

         Và \(\frac{1}{2}<1\) 

        \(=>\)  (\(\frac{1}{1.2}-\frac{1}{101.102}\) ) .\(\frac{1}{2}\) \(<1\)

        \(=>\) M <1

Đinh Đức Hùng
Xem chi tiết
Nguyen Viet Dat
25 tháng 1 2016 lúc 17:37

Dat A=1.2.3+2.3.4+3.4.5+...+98.99.100

      4A=1.2.3.4+2.3.4.4+3.4.5.4+...+98.99.100.4

      4A=1.2.3.4+2.3.4.(5-1)+3.4.5.(6-2)+...+98.99.100.(101-97)

       4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+98.99.100.101-97.98.99.100

        4A=98.99.100.101

         A=\(\frac{98.99.100.101}{4}\)

          A=24497550

Ung ho minh nha

Tick minh thi may man ca nam do!!!!!

Tick minh nha Dinh Duc Hung

oOo tHằNg NgỐk tỰ Kỉ oOo
25 tháng 1 2016 lúc 17:20

Đinh Đức Hùng dg j đây

Thùy Hương Arica
25 tháng 1 2016 lúc 17:35

Đinh Đức Hùng

bằng ............................................2497550?,.................

Lê Anh Duy
Xem chi tiết
Nguyễn Hoàng Tuấn Tú
Xem chi tiết
Athanasia Karrywang
24 tháng 9 2021 lúc 19:02

4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]

4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4

4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]

4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)

4A = (n – 1).n(n + 1).(n + 2)

A = (n – 1).n(n + 1).(n + 2) : 4.

Khách vãng lai đã xóa
Nguyễn Hoàng Tuấn Tú
24 tháng 9 2021 lúc 19:03

cau a thi sao ha ban ? 

Khách vãng lai đã xóa
Nguyễn Hoàng Tuấn Tú
24 tháng 9 2021 lúc 19:05

ok thanks ban nhe

Khách vãng lai đã xóa
Lê Anh Duy
Xem chi tiết
Phạm Thiên An
Xem chi tiết
Lê Tài Bảo Châu
5 tháng 5 2019 lúc 21:32

Tính ra M to lắm bạn ơi so sánh với 1 đời nào

Kiệt Nguyễn
5 tháng 5 2019 lúc 21:33

\(M=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{100.101.102}\)

\(\Rightarrow2M=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{100.101.102}\)

\(\Rightarrow2M=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{100.101}-\frac{1}{101.102}\)

\(\Rightarrow2M=\frac{1}{1.2}-\frac{1}{101.102}\)

\(\Rightarrow M=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{101.102}\right)=1-\frac{1}{202.102}< 1\)

Vậy M < 1

Lê Tài Bảo Châu
5 tháng 5 2019 lúc 21:34

Anh Kiệt ơi \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{101.102}\right)=\frac{1}{4}-\frac{1}{202.102}\)chứ ạ ???

Xem chi tiết
Nguyễn Hoàng Minh
26 tháng 9 2021 lúc 9:31

Ta có \(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)

Áp dụng:

\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{10\cdot11\cdot12}\\ =\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{10\cdot11}-\dfrac{1}{11\cdot12}\\ =\dfrac{1}{2}-\dfrac{1}{11\cdot12}=\dfrac{1}{2}-\dfrac{1}{132}=\dfrac{65}{132}\)

Nguyễn Hoàng Minh
26 tháng 9 2021 lúc 9:41

Ta có \(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)

Áp dụng

\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{10\cdot11\cdot12}\\ =\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{10\cdot11\cdot12}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+..+\dfrac{1}{10\cdot11}-\dfrac{1}{11\cdot12}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{11\cdot12}\right)=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{132}\right)=\dfrac{1}{2}\cdot\dfrac{65}{132}=\dfrac{65}{264}\)

Edogawa Conan
26 tháng 9 2021 lúc 9:44

Ta có: \(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)

Đặt \(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{10.11.12}\)

   \(\Leftrightarrow2A=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{10.11.12}\)

             \(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{10.11}-\dfrac{1}{11.12}\)

             \(=\dfrac{1}{2}-\dfrac{1}{11.12}=\dfrac{65}{132}\)

  \(\Rightarrow A=\dfrac{65}{132}:2=\dfrac{65}{264}\)

tuananhtz080808
Xem chi tiết