cho hàm số y = x^2 - 2x - 3(P) và y = x - 3(d). Gọi A và B theo thứ tự là giao điểm của (d) và (P). Tìm tọa độ điểm M thuộc trục đối xứng của (P) sao cho | MA + MB | đạt giá trị lớn nhất
Bài 1: Cho hàm số y=x2 có đồ thị (P) và hàm số y=4x+m có đồ thị (dm) Tìm tất cả các giá trị của m sao cho (dm) và (P) cắt nhau tại hai điểm phân biệt, trong đó trung độ của một trong hai giao điểm đó bằng 1 Bài 2: Trong mặt phẳng Oxy cho parapol (P): y=x2 Trên (P) lấy điểm A có hoành độ xA =-2. Tìm tọa độ điểm M trên trục Ox sao cho |MA-MB| đạt giá trị lớn nhất, biết B(1;1) Bài 3: Tìm a và b để đường thẳng (d): y=(a-2)x+b có hệ số góc bằng 4 và đi qua điểm M(1;-3) Bài 4:Cho hàm số y=2x-5 có đồ thị là đường thẳng (d) a.Gọi A,B lần lượt là giao điểm của (d) với các trục tọa độ Ox,Oy. Tính tọa độ các điểm A,B và vẽ đường thẳng (d) trong mặt phẳng tọa độ Oxy b.Tính diện tích tam giác AOB HELP!!
Bài 1: Cho hàm số y=x2 có đồ thị (P) và hàm số y=4x+m có đồ thị (dm) Tìm tất cả các giá trị của m sao cho (dm) và (P) cắt nhau tại hai điểm phân biệt, trong đó trung độ của một trong hai giao điểm đó bằng 1 Bài 2: Trong mặt phẳng Oxy cho parapol (P): y=x2 Trên (P) lấy điểm A có hoành độ xA =-2. Tìm tọa độ điểm M trên trục Ox sao cho |MA-MB| đạt giá trị lớn nhất, biết B(1;1) Bài 3: Tìm a và b để đường thẳng (d): y=(a-2)x+b có hệ số góc bằng 4 và đi qua điểm M(1;-3) Bài 4:Cho hàm số y=2x-5 có đồ thị là đường thẳng (d) a.Gọi A,B lần lượt là giao điểm của (d) với các trục tọa độ Ox,Oy. Tính tọa độ các điểm A,B và vẽ đường thẳng (d) trong mặt phẳng tọa độ Oxy b.Tính diện tích tam giác AOB HELP!!
Theo Cô si 4x+\frac{1}{4x}\ge2 , đẳng thức xảy ra khi và chỉ khi 4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}). Do đó
A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016
A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014
A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014
Hơn nữa A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right. \Leftrightarrow x=\dfrac{1}{4} .
Vậy GTNN = 2014
Cho parabol (P): y = x2 và đường thẳng (d): y = -1/2 x + 3.
a) Tìm tọa độ các giao điểm A và B của (d) và (P).
b) Tìm tọa độ điểm C thuộc trục hoành để chu vi tam giác ABC đạt già trị lớn nhất.
cho hai đường thẳng y=2x+4 (d) và y= -x+3 (d')
a) vẽ (d) và (d') trên cùng một mặt phẳng tọa độ
b) gọi A là giao điểm (d) và (d'). tìm tọa độ giao điểm A (bằng phép tính)
c) cho hàm số y= (m-2)x+m-3 có đồ thị là (p), với m là là số thực cho trước. tìm các giá trị của m để (p) song song với (d)
Cho ba hàm số: y = 1/2x2 ; y = x2 ; y = 2x2 .
a) Vẽ đồ thị của ba hàm số này trên cùng một mặt phẳng tọa độ.
b) Tìm ba điểm A, B, C có cùng hoành độ x = -1,5 theo thứ tự nằm trên ba đồ thị. Xác định tung độ tương ứng của chúng.
c) Tìm ba điểm A', B', C' có cùng hoành độ x = 1,5 theo thứ tự nằm trên ba đồ thị. Kiểm tra tính đối xứng của A và A', B và B', C và C'.
d) Với mỗi hàm số trên, hãy tìm giá trị của x để hàm số đó có giá trị nhỏ nhất.
a) Vẽ đồ thị
b) Gọi yA, yB, yC lần lượt là tung độ các điểm A, B, C có cùng hoành độ x = -1,5. Ta có:
yA = . (-1,5)2 = . 2,25 = 1,125
yB = (-1,5)2 = 2,25
yC = 2 (-1,5)2 = 2 . 2,25 = 4,5
c) Gọi yA, yB, yC’ lần lượt là tung độ các điểm A', B', C' có cùng hoành độ x = 1,5. Ta có:
yA, = . 1,52 = . 2,25 = 1,125
yB, = 1,52 = 2,25
yC’ = 2 . 1,52 = 2 . 2,25 = 4,5
Kiểm tra tính đối xứng: A và A', B và B', C và C' đối xứng với nhau qua trục tung Oy.
d) Với mỗi hàm số đã cho ta đều có hệ số a > 0 nên O là điểm thấp nhất của đồ thị. Khi đó ta có x = 0.
Vậy x = 0 thì hàm số có giả trị nhỏ nhất.
1. Cho hàm số y=(3+2k)x-3k-1
a) Với giá trị nào của k thì hàm số trên là hàm số bậc nhất?
b) Tìm k để đồ thị hàm số đã cho cắt trục tung tại điểm có tung độ là 5?
2.Cho 2 hàm số y=2x+4(d1) và y=-x-2(d1')
a) vẽ đồ thị 2 hàm số trên cùng 1 mặt phẳng tọa độ?
b) Tính góc tạo bởi đường thẳng y=2x+4 với trục hoành?
c) gọi giao điểm của 2 đường thẳng là M . Xác định tọa độ điểm M?
3.Cho 3 đường thẳng y=x-1 (d1) ,y=-x+3 (d2) và y=mx-2-3 (d3).Tìm các giá trị của m để 3 đường thẳng đồng quy tại 1 điểm?
Giúp tớ với tớ đang cần rất gấp!!!!
1. a) Để hs trên là hs bậc nhất khi và chỉ khi a>0 --> 3+2k>0 --> k >\(\frac{-3}{2}\)
b) Vì đths cắt trục tung tại điểm có tung độ = 5 --> x=0, y=5
Thay y=5 và x=0 vào hs và tìm k
2. a) Tự vẽ
b) Hệ số góc k=\(\frac{-a}{b}=\frac{-2}{4}=\frac{-1}{2}\)
c) Phương trình hoành độ giao điểm là:\(2x+4=-x-2\)(tìm x rồi thay x vào 1 trong 2 pt --> tính y) (x=-2; y=0)
3. Vì 3 đg thẳng đồng quy -->d1 giao d2 giao d3 tại 1 điểm (giao kí hiệu là chữ U ngược)
Tính tọa độ giao điểm của d1 và d2 --> x=2;y=1
Điểm (2;1) thuộc d3 --> Thay x=2 và y=1 vào d3 -->m=3
Cho ba hàm số: \(y=\dfrac{1}{2}x^2;y=x^2;y=2x^2.\)
a) Vẽ đồ thị của ba hàm số này trên cùng một mặt phẳng tọa độ.
b) Tìm ba điểm A, B ,C có cùng hoành độ x = -1,5 theo thứ tự nằm trêm ba đồ thị. Xác định tung độ tương ứng của chúng.
c) Tìm ba điểm A'; B';C' có cùng hoành độ x = 1,5 theo thứ tự nằm trên ba đồ thị. Kiểm tra tính đối xứng của A và A'; B và B'; C và C'.
d) Với mỗi hàm số trên, hãy tìm giá trị của x để hàm số đó có giá trị nhỏ nhất.
a) Vẽ đồ thị
b) Gọi yA, yB, yC lần lượt là tung độ các điểm A, B, C có cùng hoành độ x = -1,5. Ta có:
yA = . (-1,5)2 = . 2,25 = 1,125
yB = (-1,5)2 = 2,25
yC = 2 (-1,5)2 = 2 . 2,25 = 4,5
c) Gọi yA, yB, yC’ lần lượt là tung độ các điểm A', B', C' có cùng hoành độ x = 1,5. Ta có:
yA, = . 1,52 = . 2,25 = 1,125
yB, = 1,52 = 2,25
yC’ = 2 . 1,52 = 2 . 2,25 = 4,5
Kiểm tra tính đối xứng: A và A', B và B', C và C' đối xứng với nhau qua trục tung Oy.
d) Với mỗi hàm số đã cho ta đều có hệ số a > 0 nên O là điểm thấp nhất của đồ thị. Khi đó ta có x = 0.
Vậy x = 0 thì hàm số có giả trị nhỏ nhất.
trên trục tọa độ Oxy cho đường thẳng d: 3x-2y+5=0 và A(4;7),B(2;1)
Tìm tọa độ điểm M thuộc d sao cho : giá trị tuyệt đối của MA-2MB nhỏ nhất
(MA và MB đều là vecto nhá)
Gọi `M(x;3/2x+5/2)`
Ta có:`|\vec{MA}-2\vec{MB}|`
`=|(4-x;7-3/2x-5/2)-2(2-x;1-3/2x-5/2)|`
`=|(x;3/2x+17/2)|`
`=\sqrt{x^2+(3/2x+17/2)^2}`
`=\sqrt{x^2+9/4x^2+51/2x+289/4}`
`=\sqrt{13/4x^2+51/2x+289/4}`
`=\sqrt{(\sqrt{13}/2 x+[51\sqrt{13}]/26)^2+289/13} >= [17\sqrt{13}]/13`
Dấu "`=`" xảy ra `<=>\sqrt{13}/2x+[51\sqrt{13}]/26=0<=>x=-51/13`
`=>M(-51/13;-44/13)`
cho hàm số y=0.5x+2 và y=5-2x a, vẽ đồ thị b, gọi giao điểm của 2 đoạn thẳng với trục hoành theo thứ tự là A, B gọi giao điểm của 2 đoạn thẳng là C. Tìm tọa độ của 3 điểm đó c, Tính chu vi và diện tích tam giác ABC
b: Tọa độ điểm A là:
\(\left\{{}\begin{matrix}y_A=0\\0.5x+2=0\end{matrix}\right.\Leftrightarrow A\left(-4;0\right)\)
Tọa độ điểm B là:
\(\left\{{}\begin{matrix}y_B=0\\5-2x_B=0\end{matrix}\right.\Leftrightarrow B\left(2.5;0\right)\)
Tọa độ điểm C là:
\(\left\{{}\begin{matrix}0.5x+2=5-2x\\y=-2x+5\end{matrix}\right.\Leftrightarrow C\left(1.2;2.6\right)\)
c: \(AB=6.5\)
\(BC=\sqrt{\left(1.2-2.5\right)^2+2.6^2}=\dfrac{13\sqrt{5}}{10}\)
\(AC=\sqrt{\left(1.2+4\right)^2+2.6^2}=\dfrac{13\sqrt{5}}{5}\)
Vì \(AC^2+BC^2=AB^2\) nên ΔABC vuông tại C
\(C=6.5+\dfrac{13\sqrt{5}}{10}+\dfrac{13\sqrt{5}}{5}=\dfrac{65+39\sqrt{5}}{10}\)
\(S=\dfrac{13\sqrt{5}}{10}\cdot\dfrac{13\sqrt{5}}{5}=16.9\)