Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Nhật Hạ
Xem chi tiết
TuiTenQuynh
3 tháng 1 2019 lúc 23:21

M = x4 - 6x3 + 10x2 - 6x + 9

M = (x2 - 6x + 9) + x4 - 6x3 + 9x2

M = (x - 3)2 + x2(x2 - 6x + 9)

M = (x - 3)2.(1 + x2)

Ta có:\(\left(x-3\right)^2\ge0;\left(1+x^2\right)\ge1\)

\(\Rightarrow M\ge1\)

Dấu 'x' xảy ra khi:

\(\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy Mmin = 1 khi x = 3

Chúc bạn học tốt!!!

TuiTenQuynh
4 tháng 1 2019 lúc 11:02

Mình giải lại từ dòng số 6 nhé!!!

=> M = 0 

Dấu '=' xảy ra khi:

(x - 3)2 = 0 => x - 3 = 0

=> x = 3

Vậy Mmin = 0 khi x = 3

Phương Li Nha
Xem chi tiết
Renian Karin
Xem chi tiết
Cao Phan Tuấn Anh
23 tháng 12 2015 lúc 22:37

đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn

Liên Hoa
Xem chi tiết
Trần Mai Thanh Ngọc
Xem chi tiết
Thùy Linh Thái
29 tháng 10 2017 lúc 10:59

B=(x^2-6x+9)-8

B=(x-3)^2-8

Vì (x-3)^2\(\ge0\forall x\)

-> (x-3)-8\(\ge-8\forall x\)

Dấu = xảy ra<=> x-3=0<=>x=3

C=2x^2-10x+1

C=2(x^2-5x+6,25)-11,5

C= 2(x-2,5)^2-11,5

Vì 2(x-2,5)^2\(\ge0\forall x\)

->2(x-2,5)^2-11,5\(\ge-11,5\forall x\)

Dấu = xẩy ra<=> x-2,5=0<=>x=2,5

Vậy Min C là -11,5 <=> x=2,5

D= x^2+10-25

D=(x^2+10+25)-50

D=(x+5)^2-50

Vì (x-5)^2 \(\ge0\forall x\)

-> (x-5)^2-50\(\ge-50\forall x\)

Dấu = xẩy ra <=> x-5=0<=>x=5

Vậy Min D là -50 <=>x=5

Thùy Linh Thái
29 tháng 10 2017 lúc 11:08

Tìm Max

B= 5x-x^2

B=-(x^2-5x+25/4)-25/4

B= -(x-5/2)^2-25/4

Vì -(x-5/2)^2\(\le0\forall x\)

-> -(x-5/2)^2-25/4\(\le\)-25/4

Dấu = xẩy ra <=> x-5/2=0<=>x=5/2

Vậy Max B là -25/4 <=> x=5/2

C=-x^2-6x+10

C=-(x^2+6x+9)+19

C= -(x+3)^2+19

Vì -(x+3)^2\(\le\)0

=> -(x+3)^2+19\(\le\)19

Dấu = xảy ra <=> x+3=0<=>x=-3

D= -2x^x+8x+12

D=-2(x^2-4x+4)+20

D=-2(x-2)^2 +20

 Vì -2(x-2)^2\(\le\)0

=> -2(x-2)^2+20\(\le\)20

Dấu= xẩy ra<=> x-2=0<=>x=2

Vậy Max D là 20<=>x-2

Trần Quốc Anh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
24 tháng 9 2017 lúc 10:06

Ta có : C = x2 - 10x 

               = x2 - 10x + 25 - 25 

            C = (x - 5)2 - 25

Vì \(\left(x-5\right)^2\ge0\forall x\in R\)

Nên : \(C=\left(x-5\right)^2-25\ge-25\forall x\in R\)

Vậy \(C_{min}=-25\) khi x - 5 = 0 => x = 5

Ta có : \(C=6x-x^2\)

\(=-\left(x^2-6x\right)\)

\(=-\left(x^2-6x+9-9\right)\)

\(=-\left(x^2-6x+9\right)+9\)( chuyển -9 ra ngoặc thành 9 ) 

\(C=-\left(x-3\right)^2+9\)

Vì \(-\left(x-3\right)^2\le0\forall x\in R\)

Nên : \(C=-\left(x-3\right)^2+9\le9\forall x\in R\)

Vậy \(C_{max}=9\) khi x - 3 = 0 => x = 3 . 

Hue Nguyen
Xem chi tiết
HT.Phong (9A5)
11 tháng 7 2023 lúc 8:01

1, \(\sqrt{4-4x+x^2}=3\)

\(\Leftrightarrow\sqrt{\left(2+x\right)^2}=3\)

\(\Leftrightarrow\left|2+x\right|=3\)

TH1: \(\left|2-x\right|=2-x\) với \(2-x\ge0\Leftrightarrow x\le2\)

Pt trở thành:

\(2-x=3\) (ĐK: \(x\le2\) )

\(\Leftrightarrow x=2-3\)

\(\Leftrightarrow x=-1\left(tm\right)\)

TH2: \(\left|2-x\right|=-\left(2-x\right)\) với \(2-x< 0\Leftrightarrow x>2\)

Pt trở thành:

\(-\left(2-x\right)=3\) (ĐK: \(x>2\))

\(\Leftrightarrow-2+x=3\)

\(\Leftrightarrow x=3+2\)

\(\Leftrightarrow x=5\left(tm\right)\)

Vậy \(S=\left\{-1;5\right\}\)

HT.Phong (9A5)
11 tháng 7 2023 lúc 8:15

2, \(\sqrt{x^2-6x+9}=1\)

\(\Leftrightarrow\sqrt{x^2-2\cdot3\cdot x+3^2}=1\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=1\)

\(\Leftrightarrow\left|x-3\right|=1\)

TH1: \(\left|x-3\right|=x-3\) với \(x-3\ge0\Leftrightarrow x\ge3\)

Pt trở thành:

\(x-3=1\) (ĐK: \(x\ge3\))

\(\Leftrightarrow x=1+3\)

\(\Leftrightarrow x=4\left(tm\right)\)

TH2: \(\left|x-3\right|=-\left(x-3\right)\) với \(x-3< 0\Leftrightarrow x< 3\)

Pt trở thành:

\(-\left(x-3\right)=1\) (ĐK: \(x< 3\))

\(\Leftrightarrow-x+3=1\)

\(\Leftrightarrow-x=1-3\)

\(\Leftrightarrow-x=-2\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy \(S=\left\{2;4\right\}\)

Kiều Vũ Linh
11 tháng 7 2023 lúc 8:16

1) √(4 - 4x + x²) = 3

⇔ √(2 - x)² = 3

ĐKXĐ: Với mọi x ∈ R

⇔ |2 - x| = 3 (1)

*) |2 - x| = 2 - x ⇔ 2 - x ≥ 0 ⇔ x ≥ 2

(1) ⇔ 2 - x = 3

⇔ x = 2 - 3

⇔ x = -1 (nhận)

*) |2 - x| = x - 2 ⇔ 2 - x < 0 ⇔ x > 2

(1) ⇔ x - 2 = 3

⇔ x = 5 (nhận)

Vậy x = -1; x = 5

Nguyễn Như Ngọc
Xem chi tiết
Phạm Tuấn Kiệt
Xem chi tiết