Rút gọn P : P= [x/(x+2)(x-2) + 1/x+2 - 2/x-2 ] : ( 1- x/x+2 )
Cho M = (√x-1/x-1 + 2-2√x/x√x+x-√x-1)÷(√x+2/x+√x-2 - 2/x-1)
Rút gọn M
Thì sau khi rút gọn M= √x - 1 đúng không
Câu 1: Rút gọn biểu thức: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{2}}+\dfrac{6}{x+3\sqrt{x}}\right)\) với x > 0
Câu 2: Rút gọn biểu thức:
\(P=\dfrac{x\sqrt{2}}{2\sqrt{x}+x\sqrt{2}}+\dfrac{\sqrt{2x}-2}{x-2}\) với x > 0; x \(\ne\) 2
Câu 3: Rút gọn biểu thức:
\(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\) với a > 0; a \(\ne\) 4
Câu 1:
Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)
Câu 3:
Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)
\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)
\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)
\(=\sqrt{a}\left(\sqrt{a}-2\right)\)
\(=a-2\sqrt{a}\)
Rút gọn B=(x^2+x+1)(x^2-x+1)(x^2-1)
Rút gọn B=(x^2+x+1)(x^2-x+1)(x^2-1)
Rút gọn giùm mình với: (x+1)*(x+2)*(x^2+4)*(x-1)*(x^2+1)*(x-2)
\(\left(x+1\right)\left(x+2\right)\left(x^2+4\right)\left(x-1\right)\left(x^2+1\right)\left(x-2\right)=\left(x+1\right)\left(x-1\right)\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\left(x^2+1\right)\)
\(=\left(x^2-1\right)\left(x^2+1\right)\left(x^2+4\right)\left(x^2-4\right)=\left(x^4-1\right)\left(x^4-16\right)\)
Rút gọn: (x+1)^4-6(x+1)^2-(x^2-2)(x^2+2)
(x + 1)^4 - 6(x + 1)^2 - (x^2 - 2)(x^2 + 2)
= (x^2 + 2x + 1)(x^2 + 2x + 1) - 6(x^2 + 2x + 1) - (x^2 - 2)(x^2 + 2)
= x^2.(x^2 + 2x + 1) + 2x.(x^2 + 2x + 1) + x^2 + 2x + 1 - (x^2 - 2)(x^2 + 2)
= x^4 + 2x^3 + x^2 + 2x^3 + 4x^2 + 2x + x^2 + 2x + 1 - 6x^2 - 12x - 6 - x^2 + 2^2
= 4x^3 - 8x - 1
\(\left(x+1\right)^4-6\left(x+1\right)^2-\left(x^2-2\right)\left(x^2+2\right)\)
\(=\left(x^2+2x-5\right)\left(x^2+2x+1\right)-x^4+2\)
\(=x^4+2x^3+x^2+2x^3+4x^2+2x-5x^2-10x-5-x^4+4\)
\(=4x^3-8x-1\)
1. Cho biểu thức : Q = ( √x + 2 / x +2 √x + 1 - √x - / x -1) ( x+ √x)
a) Rút gọn biểu thức Q
b) Tìm các gtri nguyên x dể Q nhận gtri nguyên
2. Cho biểu thức : A= ( 1/ √x +2 + 1/ √x +2 + 1/ √x -2 ) ( √x -2 /x
a) Tìm đk xác định và rút gọn A
b) Tìm tất cả các gtri của x để A > 1/2
MÌNH CẦN GẤP TRONG TỐI NI NHA
Bài 1:
a: \(Q=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\left(x+\sqrt{x}\right)\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\left(\sqrt{x}+1\right)\)
\(=\dfrac{2x}{x-1}\)
P=(x^2-1/x^4-x^2+1 + 2/x^6+1 - 1/x^2+1).(x^2 - x^4+x^2-1/x^4+x^2+1 )
a,Rút gọn b,Tìm GTLN
Bạn vào biểu tượng \(\Sigma\) để nhập biểu thức cho chính xác nhé
Rút gọn
a) (x+1)(x^2-x+1)-x^3
b) (x-2)^2-x(x+2)
a) (x+1)(x^2-x+1)-x^3
= x^3+1 - x^3 =1
b) (x-2)^2 -x(x+2)
= x^2 -4x+4-x^2-2x
=-6x+4
=-2(3x-2)