A+B+C=A^2+B^2+C^2=3.TINH A^2018+B^2018+C^2018
cho a+b+c=a^2+b^2+c^2=3.tinh a^2018+b^2018+c^2018
Cho a^3+b^3=c(3ab-c^2) và a+b+c=3 tính gt của biểu thức
A=672.(a^2018+b^2018+c^2018)+2
\(a^3+b^3=c\left(3ab-c^2\right)\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left[2a^2+2b^2+2c^2-2ab-2bc-2ca\right]=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Rightarrow\orbr{\begin{cases}a+b+c=0\left(loai\right)\\a=b=c\end{cases}}\)
Mà a + b + c = 3 nên a = b = c = 1
Khi đó \(A=672.\left(1+1+1\right)+2=672.3+2=2018\)
Cho a, b, c thỏa mãn (a + b + c)(ab + bc + ac) = 2018 và abc = 2018. Tính giá trị của biểu thức P = (b^2.c + 2018)(a^2.b + 2018)(c^2.a + 2018)
Cho a,b,c là số thực thỏa mãn: (a+b+c)(ab+bc+ca)=2018 và abc=2018
Tính P= (b2c+2018)(c2a+2018)(a2b+2018)
Cho a, b, c thỏa mãn (a + b + c)(ab + bc + ac) = 2018 và abc = 2018. Tính giá trị của biểu thức P = (b^2.c + 2018)(a^2.b + 2018)(c^2.a + 2018)
\(P=\left(b^2c+abc\right)\left(a^2b+abc\right)\left(c^2a+abc\right)\)
\(=bc\left(a+b\right)\cdot ab\left(c+a\right)\cdot ca\left(b+c\right)\)
\(=\left(abc\right)^2\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Lại có:
\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc=0\)
\(\Leftrightarrow\left(a^2b+abc+a^2c\right)+\left(ab^2+b^2c+abc\right)+\left(bc^2+c^2a+abc\right)-abc=0\)
\(\Leftrightarrow a^2b+ca^2+ab^2+2abc+ac^2+b^2c+bc^2=0\)
\(\Leftrightarrow a^2\left(b+c\right)+a\left(b^2+2bc+c^2\right)+bc\left(b+c\right)=0\)
\(\Leftrightarrow a^2\left(b+c\right)+a\left(b+c\right)^2+bc\left(b+c\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left(a^2+ab+ca+bc\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left[a\left(a+b\right)+c\left(a+b\right)\right]=0\)
\(\Leftrightarrow\left(b+c\right)\left(a+b\right)\left(c+a\right)=0\)
\(\Rightarrow P=0\)
cho a+b=c+d
a^2+b^2=c^2+d^2
chung minh a^2018+b^2018=c^2018+b^2018
1. Cho \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) c/m
a) (2a+3c) . (2b-3d) = (2a- 3c) . (2b+3d)
b) \(\dfrac{\left(a^2+c\right)^2}{\left(b+d\right)^2}\) = \(\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}\)
c)\(\dfrac{a^3+b^3}{c^3+d^3}\) = \(\dfrac{a^3-b^3}{c^3-d^3}\)
d) \(\dfrac{a^{2018}-b^{2018}}{a^{2018}+b^{2018}}\) = \(\dfrac{c^{2018}-d^{2018}}{c^{2018}+d^{2018}}\)
HELP ME >~< !!!
a) \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)
Từ \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) = k ( k \(\in\) Q, k \(\ne\) 0 )
=> \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
VP = \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2.b.k+3.d.k}{2b+3d}\) = \(\dfrac{k.\left(2b+3d\right)}{2b+3d}\) = k (1)
VT = \(\dfrac{2a-3c}{2b-3d}\) = \(\dfrac{2.b.k-3.d.k}{2b-3d}\) = \(\dfrac{k.\left(2b-3d\right)}{2b-3d}\) = k (2)
Từ (1) và (2) ta có: \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)
hay: (2a+3c).(3b-3d) = (2a-3c).(2b+3d)
b: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=k^2\)
\(\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}=\dfrac{\left(bk-dk\right)^2}{\left(b-d\right)^2}=k^2\)
Do đó: \(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}\)
c: \(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{b^3k^3+b^3}{d^3k^3+d^3}=\dfrac{b^3}{d^3}\)
\(\dfrac{a^3-b^3}{c^3-d^3}=\dfrac{b^3k^3-b^3}{d^3k^3-d^3}=\dfrac{b^3}{d^3}\)
Do đó: \(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{a^3-b^3}{c^3-d^3}\)
d: \(\dfrac{a^{2018}-b^{2018}}{a^{2018}+b^{2018}}=\dfrac{b^{2018}k^{2018}-b^{2018}}{b^{2018}k^{2018}+b^{2018}}=\dfrac{k^{2018}-1}{k^{2018}+1}\)
\(\dfrac{c^{2018}-d^{2018}}{c^{2018}+d^{2018}}=\dfrac{k^{2018}-1}{k^{2018}+1}\)
Do đó: \(\dfrac{a^{2018}-b^{2018}}{a^{2018}+b^{2018}}=\dfrac{c^{2018}-d^{2018}}{c^{2018}+d^{2018}}\)
cho a+b=c+d
va a^2+b^2=c^2+d^2
chung minh rang
a^2018+b^2018=c^2018+d^2018
Cho số thực a, b, c phân biệt chứng minh
(A+2018/B-C)^2 +(B+2018/C-A) ^2+ (C+2018/A-B) ^2 >=2