Bài 3: Những hằng đẳng thức đáng nhớ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngô Phúc Dương

Cho a, b, c thỏa mãn (a + b + c)(ab + bc + ac) = 2018 và abc = 2018. Tính giá trị của biểu thức P = (b^2.c + 2018)(a^2.b + 2018)(c^2.a + 2018)

Luân Đào
4 tháng 1 2019 lúc 11:45

\(P=\left(b^2c+abc\right)\left(a^2b+abc\right)\left(c^2a+abc\right)\)

\(=bc\left(a+b\right)\cdot ab\left(c+a\right)\cdot ca\left(b+c\right)\)

\(=\left(abc\right)^2\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Lại có:

\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc=0\)

\(\Leftrightarrow\left(a^2b+abc+a^2c\right)+\left(ab^2+b^2c+abc\right)+\left(bc^2+c^2a+abc\right)-abc=0\)

\(\Leftrightarrow a^2b+ca^2+ab^2+2abc+ac^2+b^2c+bc^2=0\)

\(\Leftrightarrow a^2\left(b+c\right)+a\left(b^2+2bc+c^2\right)+bc\left(b+c\right)=0\)

\(\Leftrightarrow a^2\left(b+c\right)+a\left(b+c\right)^2+bc\left(b+c\right)=0\)

\(\Leftrightarrow\left(b+c\right)\left(a^2+ab+ca+bc\right)=0\)

\(\Leftrightarrow\left(b+c\right)\left[a\left(a+b\right)+c\left(a+b\right)\right]=0\)

\(\Leftrightarrow\left(b+c\right)\left(a+b\right)\left(c+a\right)=0\)

\(\Rightarrow P=0\)


Các câu hỏi tương tự
Tran Bao
Xem chi tiết
Ruby
Xem chi tiết
Nguyễn Hà Bảo Trâm
Xem chi tiết
Chuột yêu Gạo
Xem chi tiết
Ko Nho Tao
Xem chi tiết
Huỳnh Quốc Thái
Xem chi tiết
Ánh Dương
Xem chi tiết
Nguyễn Phan Thương Huyền
Xem chi tiết
Đoàn Phương Linh
Xem chi tiết