Vẽ tam giác ABC.Gọi DE theo thứ tự là trung điểm của AB,AC.
a)Trên tia đối của tia ED lấy điểm I sao cho EI = ED.Chung minh rằng Di = BC
Cho tam giác ABC. Gọi D, E theo thứ tự là trung điểm của AB, AC.
a) Trên tia đối của tia ED lấy điểm I sao cho EI =ED. Chứng minh rằng AI = DC
b) Chứng minh rằng AI // DC
c) Chứng minh rằng tam giác DAI = tam giác BDC
d) Chứng minh rằng DE = 1/2BC, DE // BC
a: Xét ΔEAI và ΔECD có
EA=EC
góc AEI=góc CED
EI=ED
=>ΔEAI=ΔECD
=>AI=CD
b: ΔEAI=ΔECD
=>góc EAI=góc ECD
=>AI//CD
c: Xét ΔDAI và ΔBDC có
DA=BD
AI=DC
DI=BC
=>ΔDAI=ΔBDC
d: Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
nên DE là đường trung bình
=>DE=1/2BC và ED//BC
cho tam giác ABC. Gọi D, E theo thứ tự là trung điểm của Ab, Ac.
a trên tía đối của tia ED lấy điểm I sao cho Ei=ED. Chứng minh rằng AI=DC
Xét tam giác AEI và tam giác CED
DE = EI (GT)
Góc DEC = Góc AEI (đối đỉnh)
AE = EC (vì E là trung điểm của AC)
=> tam giác AEI = tam giác CED (c - g - c)
=> AI = CD
Cho tam giác ABC. Gọi D, E theo thứ tự là trung điểm của AB, AC.
a) Trên tia đối của tia ED lấy điểm I sao cho EI =ED. Chứng minh rằng AI = DC
b) Chứng minh rằng DE = 1/2BC, DE // BC
Bài giải
a) Xét \(\Delta AEF\) và \(\Delta CED\) có :
AE = CE ( E là trung điểm AC )
\(\widehat{ AEF}\) = \(\widehat{CED}\) ( đối đỉnh)
EF = ED ( gt )
\(\Rightarrow\)\(\Delta AEF =\Delta CED\) ( c.g.c)
\(\Rightarrow\text{ }AF=DC\) ( 2 cạnh tương ứng )
b)
Xét \(\Delta AED\) và \(\Delta CEF\) có:
AE = EC (gt)
AED = CEF ( đối đỉnh)
ED = EF (gt)
Do đó, \(\Delta AED\) = \(\Delta CEF\) (c.g.c)
=> AD = CF (2 cạnh tương ứng)
ADE = CFE (2 góc tương ứng)
Mà ADE và CFE là 2 góc so le trong
nên CF // AD hay CF // AB hay CF//DB
Nối đoạn CD
Xét \(\Delta BDC\) và \(\Delta FCD\) có:
BD = FC ( cùng = AD)
BDC = FCD (so le trong)
CD là cạnh chung
Do đó, \(\Delta BDC\) = \(\Delta FCD\) (c.g.c)
=> BC = FD ( 2 cạnh tương ứng )
Mà \(DE=EF=\frac{1}{2}FD\)
=>DE=1/2 BC ( đpcm)
Lại có : \(\Delta BDC=\Delta FCD\)( cmt)
=> BCD = FDC (2 góc tương ứng)
Mà BCD và FDC là 2 góc so le trong nên DF // BC hay DE // BC ( E thuộc DF) ( đpcm)
Cho tam giác ABC . Gọi D , E theo thứ tự là trung điểm của AB , AC
a) Trên tia đối của tia ED lấy điểm I sao cho EI=ED . Cmr DI=BC
b) Cmr DE =1/2BC , DE//BC
a, D;E Lần lượt là trung điểm của AB và AC (gt)
=> DE là đtb của tam giác ABC (Đn)
=> DE = 1/2BC => 2DE = BC (đl)
DE = EI => DI = 2DE
=> DI = BC
b,
Cho tam giác ABC.Gọi D,Etheo thứ tự là trung điểm của AB,AC.
a, trên tia đối của tiaED lấy điểm I sao cho EI=ED.CMR DI=BC
b,CMR DE=1/2BC;DE//BC
Cho tam giác ABC cân tại A. Gọi M là trung điểm của BC,D là trung điểm của AC.
a) Trên tia đối của tia DB lấy điểm E sao cho DE=DB. Chứng minh rằng AE song song với BC.
b) Trên tia đối của tia AB lấy điểm Fsao cho AF=AB. Chứng minh rằng góc FAC= 2 góc ABC
c) Chứng minh rằng AD song song với EF và AD = 1/2 EF
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm AB lấy điểm D sao cho AD = AB. Trên tia đối của tia AC lấy điểm E sao cho AE = AC. Gọi M, N theo thứ tự là các trung điểm của BC, DE. Chứng minh rằng góc MAN = 180o
cho tam gics ABC . gọi D;E theo thứ tự là trung điểm của AB , AC . Trên tia đối của tia ED lấy điểm F sao cho È=ED . chứng minh a)BD=CF; AB song song CF
b) tam giác BCD = tam giác FDC
c) DE song song BC
TL :
DE = BC . Xét BD//BF nên các cạnh đều đối diện nhau
HT
a) Xét t/g AEF và t/g CED có :
AE=CE ( E là trung điểm AC)
góc AEF = góc CED ( đối đỉnh)
EF=ED( gt)
=> t/g AEF = t/g CED ( c.g.c)
=> AF=DC ( 2 cạnh tương ứng )
b)
Xét t/g AED và t/g CEF có:
AE = EC (gt)
AED = CEF ( đối đỉnh)
ED = EF (gt)
Do đó, t/g AED = t/g CEF (c.g.c)
=> AD = CF (2 cạnh tương ứng)
ADE = CFE (2 góc tương ứng)
Mà ADE và CFE là 2 góc so le trong
nên CF // AD hay CF // AB hay CF//DB
Nối đoạn CD
Xét t/g BDC và t/g FCD có:
BD = FC ( cùng = AD)
BDC = FCD (so le trong)
CD là cạnh chung
Do đó, t/g BDC = t/g FCD (c.g.c)
=> BC = FD ( 2 cạnh tương ứng )
Mà DE=EF=1/2 FD
=>DE=1/2 BC ( đpcm)
Lại có : t/g BDC =t/g FCD ( cmt)
=> BCD = FDC (2 góc tương ứng)
Mà BCD và FDC là 2 góc so le trong
nên DF // BC
hay DE // BC ( E thuộc DF)( đpcm)
Cho tam giác ABC,D là trung điểm của AB, E là trung điểm của AC. Trên tia đối của tia ED lấy điểm F sao cho EF=ED . Chứng minh rằng a)BD=CF b)DE//BC và DE=1/2 BC
a: Xét tứ giác ADCF có
E là trung điểm chung của AC và DF
=>ADCF là hình bình hành
=>AD=CF=BD
b: Xét ΔABC có AD/AB=AE/AC=1/2
nên DE//BC và DE/BC=AD/AB=1/2