giá trị của x ko âm thỏa mãn \(\sqrt{x< 2}\)
cho ba số thực không âm x,y,z thỏa mãn xyz=1 . tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M=\(\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\)
Theo em bài này chỉ có min thôi nhé!
Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)
Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0
Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
(chuyển vế qua dùng hằng đẳng thức là xong liền hà)
Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)
Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)
Vậy...
P/s: Ko chắc nha!
bạn bui thai hoc sao lại cmt linh tinh vậy :)) bạn ko có học thức à :> mà ý bạn cmt như vậy là sao hả ?
Cho các số không âm thỏa mãn x+y+z=3 . Tìm giá trị lớn nhất , nhỏ nhất của biểu thức \(M=\sqrt{x^2-6x+26}+\sqrt{y^2-6y+25}+\sqrt{z^2-6z+25}\)
*Tìm Max:
Do x,y,z là các số không âm và x + y + z = 3 nên \(0\le x,y,z\le3\)
Trước hết ta chứng minh:\(\sqrt{x^2-6x+26}\le\frac{\left(\sqrt{17}-\sqrt{26}\right)}{3}x+\sqrt{26}\) với \(0\le x\le3\)
\(\Leftrightarrow\frac{2}{9}\left(\sqrt{442}-17\right)x\left(3-x\right)\ge0\) (đúng)
Tương tự 2 bất đẳng thức còn lại và cộng theo vế thu được: \(M\le\sqrt{17}+2\sqrt{26}\)
Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(3;0;0\right)\) và các hoán vị.
*Tìm min:
Ta có: \(\sqrt{x^2-6x+26}=\sqrt{\frac{1}{21}\left(2x-23\right)^2+\frac{17}{21}\left(x-1\right)^2}\)
\(\ge\sqrt{\frac{1}{21}\left(2x-23\right)^2}=\sqrt{\frac{1}{21}}\left|2x-23\right|=\sqrt{\frac{1}{21}}\left(23-2x\right)\) (vì \(2x-23\le2.3-23< 0\) )
Tương tự hai BĐT còn lại và cộng theo vế:
\(M\ge\sqrt{\frac{1}{21}}\left(69-2\left(x+y+z\right)\right)=3\sqrt{21}\)
Đẳng thức xảy ra khi \(x=y=z=1\)
m=1 bạn ơi
Cho x,y,z là các số thực không âm thỏa mãn x + y + z = 1. Tìm giá trị lớn nhất của biểu thức.
\(P=\sqrt{2x^2+x+1}+\sqrt{2y^2+y+1}+\sqrt{2z^2+z+1}\)
Em không chắc đâu nha!
Từ đề bài suy ra \(0\le x;y;z\le1\Rightarrow x\left(1-x\right)\ge0\Rightarrow x\ge x^2\)
Tương tự với y với z.Ta có:
\(P=\sqrt{x^2+x^2+x+1}+\sqrt{y^2+y^2+y+1}+\sqrt{z^2+z^2+z+1}\)
\(\le\sqrt{x^2+2x+1}+\sqrt{y^2+2y+1}+\sqrt{z^2+2z+1}\)
\(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(y+1\right)^2}+\sqrt{\left(z+1\right)^2}\)
\(=\left|x+1\right|+\left|y+1\right|+\left|z+1\right|\)
\(=\left(x+y+z\right)+3=1+3=4\)
Dấu "=" xảy ra khi (x;y;z) = (0;0;1) và các hoán vị của nó.
Vậy....
Em sai chỗ nào xin các anh/ chị chỉ rõ ra giúp ạ, chứ tk sai mà không góp ý thế em cũng không biết đường nào mà tránh cái lỗi sai tương tự đâu ạ! Em cảm ơn.
Tìm giá trị lớn nhất và giá trị nhỏ nhất của
\(P=x\sqrt{1+y}+y\sqrt{1+x}\) trong đó x,y là hai số thực không âm thỏa mãn x+y=1
ÁP dụng bất đẳng thức bunyakovsky:
\(P^2=\left(\sqrt{x}\sqrt{x+xy}+\sqrt{y}\sqrt{y+xy}\right)^2\le\left(x+y\right)\left(x+y+2xy\right)=1+2xy\)
Áp dụng bất đẳng thức cauchy: \(xy\le\frac{1}{4}\left(x+y\right)^2=\frac{1}{4}\)
khi đó \(P^2\le1+\frac{1}{2}=\frac{3}{2}\)
\(\Leftrightarrow P\le\sqrt{\frac{3}{2}}\)
đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)
anh chi oi giup em cau nay voi:cho x+y=4. tim gtln cua: a=(x-2)y+2017
Cho x,y,z là các số thực không âm thỏa mãn \(x\le1,y\le1,z\le1\) và \(\sqrt{x}+\sqrt{y}+\sqrt{z}=\frac{3}{2}\) . Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P = x + y + z ?
1. Cho biểu thức \(P=x-3\sqrt{x}\)
a. Tìm giá trị của x để biieeur thức P nhận giá trị âm.
b. Tìm ĐK của x thỏa mãn\(P>-\sqrt{x}+3\)
a) đk: \(x\ge0\)
Ta có: \(P=x-3\sqrt{x}\)
\(P=\left(x-3\sqrt{x}+\frac{9}{4}\right)-\frac{9}{4}\)
\(P=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\left(\forall x\right)\)
Để P âm => \(\left(\sqrt{x}-\frac{3}{2}\right)^2< \frac{9}{4}\)
\(\Leftrightarrow-\frac{3}{2}< \sqrt{x}-\frac{3}{2}< \frac{3}{2}\)
\(\Leftrightarrow0< \sqrt{x}< 3\)
\(\Rightarrow0< x< 9\)
Vậy khi \(0< x< 9\) thì P âm
b) Ta có: \(P>-\sqrt{x}+3\)
\(\Leftrightarrow x-3\sqrt{x}+\sqrt{x}-3>0\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)-4>0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2>4\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1>2\\\sqrt{x}-1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}>3\\\sqrt{x}< -1\left(ktm\right)\end{cases}}\Rightarrow x>9\)
Vậy x > 9
\(P=x-3\sqrt{x}\)
ĐK : x ≥ 0
a) Để P nhận giá trị âm
=> \(x-3\sqrt{x}< 0\)
=> \(\sqrt{x}\left(\sqrt{x}-3\right)< 0\)
Xét hai trường hợp :
1. \(\hept{\begin{cases}\sqrt{x}>0\\\sqrt{x}-3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\\sqrt{x}< 3\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x< 9\end{cases}}\Leftrightarrow0< x< 9\)
2. \(\hept{\begin{cases}\sqrt{x}< 0\\\sqrt{x}-3>0\end{cases}}\)< dễ thấy trường hợp này không thể xảy ra vì x ≥ 0 >
Vậy vơi 0 < x < 9 thì P nhận giá trị âm
b) Để \(P>-\sqrt{x}+3\)
=> \(x-3\sqrt{x}>-\sqrt{x}+3\)
=> \(x-3\sqrt{x}+x-3>0\)
=> \(x-2\sqrt{x}-3>0\)
=> \(\left(x-2\sqrt{x}+1\right)-4>0\)
=> \(\left(\sqrt{x}-1\right)^2-2^2>0\)
=> \(\left(\sqrt{x}-1-2\right)\left(\sqrt{x}-1+2\right)>0\)
=> \(\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)>0\)
Vì \(\sqrt{x}+1\ge1>0\left(\forall x\ge0\right)\)
=> Để \(\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)>0\)
thì \(\sqrt{x}-3>0\)
<=> \(\sqrt{x}>3\)
<=> \(x>9\)
Vậy với x > 9 thì thỏa mãn đề bài
Cho x, y là những số không âm thỏa mãn \(x^2+y^2=1\). Tìm giá trị lớn nhất của biểu thức P=\(\sqrt{1+2x}+\sqrt{1+2y}\)
Cho các số không âm x, y ,z thỏa mãn: x + y + z = 1. Tìm giá trị lớn nhất của
\(S=\sqrt{3x^2+1}+\sqrt{3y^2+1}+\sqrt{3z^2+1}\)
Vì \(\hept{\begin{cases}x;y;z\ge0\\x+y+z=1\end{cases}\Rightarrow0\le x;y;z\le1}\)
\(\Rightarrow\hept{\begin{cases}x\left(1-x\right)\ge0\\y\left(1-y\right)\ge0\\z\left(1-z\right)\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-x^2\ge0\\y-y^2\ge0\\z-z^2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2\le x\\y^2\le y\\z^2\le z\end{cases}}\)
Ta có \(S=\sqrt{3x^2+1}+\sqrt{3y^2+1}+\sqrt{3z^2+1}\)
\(=\sqrt{x^2+2x^2+1}+\sqrt{y^2+2y^2+1}+\sqrt{z^2+2z^2+1}\)
\(\le\sqrt{x^2+2x+1}+\sqrt{y^2+2y+1}+\sqrt{z^2+2z+1}\)
\(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(y+1\right)^2}+\sqrt{\left(z+1\right)^2}\)
\(=x+1+y+1+z+1\)
\(=x+y+z+3=4\)
Dấu "=" xảy ra khi x = y = 0 ; z = 1 và các hoán vị
xét :\(\sqrt{3a^2+1}=< a+1\)
=>\(3a^2+1=< a^2+2a+1\)
=>\(2a\left(a-1\right)=< 0\)luon dung
ap dụng bđt vừa chứng minh ta có :S>=x+y+z+3=1
xay ra dấu = khi x=y=0,z=1(hoán vị)
Hai chữ số tận cùng của 51^51
2. Trung bình cộng của các giá trị của x thỏa mãn: (x - 2)^8 = (x - 2)^6
3. Số x âm thỏa mãn: 5^(x - 2).(x + 3) = 1
4. Số nguyên tố x thỏa mãn: (x - 7)^x+1 - (x - 7)^x+11 = 0
5. Tổng 3 số x,y,y biết: 2x = y; 3y = 2z và 4x - 3y + 2z = 36
6. Tập hợp các số hữu tỉ x thỏa mãn đẳng thức: x^2 - 25.x^4 = 0
7. Giá trị của x trong tỉ lệ thức: 3x+2/5x+7 = 3x-1/5x+1
8. Giá trị của x thỏa mãn: (3x - 2)^5 = -243
9. Tổng của 2 số x,y thỏa mãn: !x-2007! = !y-2008! < hoặc = 0
10. số hữu tỉ dương và âm x thỏa mãn: (2x - 3)^2 = 16
11. Tập hợp các giá trị của x thỏa mãn đẳng thức: x^6 = 9.x^4
12. Số hữu tỉ x thỏa mãn: |x|. |x^2+3/4| = X
có khùng hk vậy hùng tự đăng tự giải ls
1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51
Vậy 2 số tận cùng của 51^51 là 51
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3
Vậy trung bìng cộng là 2
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6
Do x là số nguyên tố => x=7 TM
5)3y=2z=> 2z-3y=0
4x-3y+2z=36=> 4x=36=> x=9
=> y=2.9=18=> z=3.18/2=27
=> x+y+z=9+18+27=54
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7)
Nhân ra kết quả cuối cùng là x=3
8)ta có (3x-2)^5=-243=-3^5
=> 3x-2=-3 => x=-1/3
9)Câu này chưa rõ ý bạn muốn hỏi!
10)2x-3=4 hoặc 2x-3=-4
<=> x=7/2 hoặc x=-1/2
11)x^4=0 hoặc x^2=9
=> x=0 hoặc x=-3 hoặc x=3