Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bui thai hoc
Xem chi tiết
tth_new
29 tháng 9 2019 lúc 9:18

Theo em bài này chỉ có min thôi nhé!

Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)

Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0

Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

(chuyển vế qua dùng hằng đẳng thức là xong liền hà)

Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)

Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)

Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)

Vậy...

P/s: Ko chắc nha!

bui thai hoc
30 tháng 9 2019 lúc 9:59

dit me may 

Lãnh Hàn Thiên Kinz
19 tháng 7 2020 lúc 19:01

bạn bui thai hoc sao lại cmt linh tinh vậy :)) bạn ko có học thức à :> mà ý bạn cmt như vậy là sao hả ? 

Khách vãng lai đã xóa
Nguyen Cong Hoang
Xem chi tiết
tth_new
18 tháng 2 2020 lúc 7:04

*Tìm Max:

Do x,y,z là các số không âm và x + y + z = 3 nên \(0\le x,y,z\le3\)

Trước hết ta chứng minh:\(\sqrt{x^2-6x+26}\le\frac{\left(\sqrt{17}-\sqrt{26}\right)}{3}x+\sqrt{26}\) với \(0\le x\le3\)

\(\Leftrightarrow\frac{2}{9}\left(\sqrt{442}-17\right)x\left(3-x\right)\ge0\)  (đúng)

Tương tự 2 bất đẳng thức còn lại và cộng theo vế thu được: \(M\le\sqrt{17}+2\sqrt{26}\)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(3;0;0\right)\) và các hoán vị.

*Tìm min:

Ta có: \(\sqrt{x^2-6x+26}=\sqrt{\frac{1}{21}\left(2x-23\right)^2+\frac{17}{21}\left(x-1\right)^2}\)

\(\ge\sqrt{\frac{1}{21}\left(2x-23\right)^2}=\sqrt{\frac{1}{21}}\left|2x-23\right|=\sqrt{\frac{1}{21}}\left(23-2x\right)\) (vì \(2x-23\le2.3-23< 0\) )

Tương tự hai BĐT còn lại và cộng theo vế:

\(M\ge\sqrt{\frac{1}{21}}\left(69-2\left(x+y+z\right)\right)=3\sqrt{21}\)

Đẳng thức xảy ra khi \(x=y=z=1\)

Khách vãng lai đã xóa
nguyễn thị minh hiếu 202...
30 tháng 10 2020 lúc 9:06

m=1 bạn ơi 

Khách vãng lai đã xóa
Ko cần bít
Xem chi tiết
tth_new
24 tháng 5 2019 lúc 19:09

Em không chắc đâu nha!

Từ đề bài suy ra \(0\le x;y;z\le1\Rightarrow x\left(1-x\right)\ge0\Rightarrow x\ge x^2\)

Tương tự với  y với z.Ta có:

\(P=\sqrt{x^2+x^2+x+1}+\sqrt{y^2+y^2+y+1}+\sqrt{z^2+z^2+z+1}\)

\(\le\sqrt{x^2+2x+1}+\sqrt{y^2+2y+1}+\sqrt{z^2+2z+1}\)

\(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(y+1\right)^2}+\sqrt{\left(z+1\right)^2}\)

\(=\left|x+1\right|+\left|y+1\right|+\left|z+1\right|\)

\(=\left(x+y+z\right)+3=1+3=4\)

Dấu "=" xảy ra khi (x;y;z) = (0;0;1) và các hoán vị của nó.

Vậy....

tth_new
24 tháng 5 2019 lúc 19:29

Em sai chỗ nào xin các anh/ chị chỉ rõ ra giúp ạ, chứ tk sai mà không góp ý thế em cũng không biết đường nào mà tránh cái lỗi sai tương tự đâu ạ! Em cảm ơn.

Thanh Tâm
Xem chi tiết
Lầy Văn Lội
3 tháng 5 2017 lúc 15:31

ÁP dụng bất đẳng thức bunyakovsky:

\(P^2=\left(\sqrt{x}\sqrt{x+xy}+\sqrt{y}\sqrt{y+xy}\right)^2\le\left(x+y\right)\left(x+y+2xy\right)=1+2xy\)

Áp dụng bất đẳng thức cauchy: \(xy\le\frac{1}{4}\left(x+y\right)^2=\frac{1}{4}\)

khi đó \(P^2\le1+\frac{1}{2}=\frac{3}{2}\)

\(\Leftrightarrow P\le\sqrt{\frac{3}{2}}\)

đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)

nguyen minh anh
5 tháng 5 2017 lúc 21:00

anh chi oi giup em cau nay voi:cho x+y=4. tim gtln cua: a=(x-2)y+2017

Lầy Văn Lội
7 tháng 5 2017 lúc 21:02

thay y=4-x vào 

Phạm Thị Hằng
Xem chi tiết
Trần Hà Trang
Xem chi tiết
Nguyễn Minh Đăng
17 tháng 10 2020 lúc 21:58

a) đk: \(x\ge0\)

Ta có: \(P=x-3\sqrt{x}\)

\(P=\left(x-3\sqrt{x}+\frac{9}{4}\right)-\frac{9}{4}\)

\(P=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\left(\forall x\right)\)

Để P âm => \(\left(\sqrt{x}-\frac{3}{2}\right)^2< \frac{9}{4}\)

\(\Leftrightarrow-\frac{3}{2}< \sqrt{x}-\frac{3}{2}< \frac{3}{2}\)

\(\Leftrightarrow0< \sqrt{x}< 3\)

\(\Rightarrow0< x< 9\)

Vậy khi \(0< x< 9\) thì P âm

b) Ta có: \(P>-\sqrt{x}+3\)

\(\Leftrightarrow x-3\sqrt{x}+\sqrt{x}-3>0\)

\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)-4>0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2>4\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1>2\\\sqrt{x}-1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}>3\\\sqrt{x}< -1\left(ktm\right)\end{cases}}\Rightarrow x>9\)

Vậy x > 9

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
17 tháng 10 2020 lúc 21:59

\(P=x-3\sqrt{x}\)

ĐK : x ≥ 0

a) Để P nhận giá trị âm

=> \(x-3\sqrt{x}< 0\)

=> \(\sqrt{x}\left(\sqrt{x}-3\right)< 0\)

Xét hai trường hợp :

1. \(\hept{\begin{cases}\sqrt{x}>0\\\sqrt{x}-3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\\sqrt{x}< 3\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x< 9\end{cases}}\Leftrightarrow0< x< 9\)

2. \(\hept{\begin{cases}\sqrt{x}< 0\\\sqrt{x}-3>0\end{cases}}\)< dễ thấy trường hợp này không thể xảy ra vì x ≥ 0 >

Vậy vơi 0 < x < 9 thì P nhận giá trị âm

b) Để \(P>-\sqrt{x}+3\)

=> \(x-3\sqrt{x}>-\sqrt{x}+3\)

=> \(x-3\sqrt{x}+x-3>0\)

=> \(x-2\sqrt{x}-3>0\)

=> \(\left(x-2\sqrt{x}+1\right)-4>0\)

=> \(\left(\sqrt{x}-1\right)^2-2^2>0\)

=> \(\left(\sqrt{x}-1-2\right)\left(\sqrt{x}-1+2\right)>0\)

=> \(\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)>0\)

Vì \(\sqrt{x}+1\ge1>0\left(\forall x\ge0\right)\)

=> Để \(\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)>0\)

thì \(\sqrt{x}-3>0\)

<=> \(\sqrt{x}>3\)

<=> \(x>9\)

Vậy với x > 9 thì thỏa mãn đề bài 

Khách vãng lai đã xóa
Thanh Tâm
Xem chi tiết
Kiệt Nguyễn Văn
Xem chi tiết
Incursion_03
3 tháng 5 2019 lúc 18:26

Vì \(\hept{\begin{cases}x;y;z\ge0\\x+y+z=1\end{cases}\Rightarrow0\le x;y;z\le1}\)

\(\Rightarrow\hept{\begin{cases}x\left(1-x\right)\ge0\\y\left(1-y\right)\ge0\\z\left(1-z\right)\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-x^2\ge0\\y-y^2\ge0\\z-z^2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2\le x\\y^2\le y\\z^2\le z\end{cases}}\)

Ta có \(S=\sqrt{3x^2+1}+\sqrt{3y^2+1}+\sqrt{3z^2+1}\)

             \(=\sqrt{x^2+2x^2+1}+\sqrt{y^2+2y^2+1}+\sqrt{z^2+2z^2+1}\)

             \(\le\sqrt{x^2+2x+1}+\sqrt{y^2+2y+1}+\sqrt{z^2+2z+1}\)

              \(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(y+1\right)^2}+\sqrt{\left(z+1\right)^2}\)

                \(=x+1+y+1+z+1\)

               \(=x+y+z+3=4\)

Dấu "=" xảy ra khi x = y = 0 ; z = 1 và các hoán vị

cao van duc
3 tháng 5 2019 lúc 21:17

xét :\(\sqrt{3a^2+1}=< a+1\)

=>\(3a^2+1=< a^2+2a+1\)

=>\(2a\left(a-1\right)=< 0\)luon dung 

ap dụng bđt vừa chứng minh ta có :S>=x+y+z+3=1

xay ra dấu = khi x=y=0,z=1(hoán vị)

Nguyễn Võ Văn
Xem chi tiết
Nguyễn Thanh Mai
26 tháng 7 2015 lúc 18:09

có khùng hk vậy hùng tự đăng tự giải ls

 

Nguyễn Võ Văn
30 tháng 6 2015 lúc 13:39

1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51 
Vậy 2 số tận cùng của 51^51 là 51 
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3 
Vậy trung bìng cộng là 2 
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6 
Do x là số nguyên tố => x=7 TM 
5)3y=2z=> 2z-3y=0 
4x-3y+2z=36=> 4x=36=> x=9 
=> y=2.9=18=> z=3.18/2=27 
=> x+y+z=9+18+27=54 
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5 
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7) 
Nhân ra kết quả cuối cùng là x=3 
8)ta có (3x-2)^5=-243=-3^5 
=> 3x-2=-3 => x=-1/3 
9)Câu này chưa rõ ý bạn muốn hỏi! 
10)2x-3=4 hoặc 2x-3=-4 
<=> x=7/2 hoặc x=-1/2 
11)x^4=0 hoặc x^2=9 
=> x=0 hoặc x=-3 hoặc x=3 

Nguyễn Hữu Thế
30 tháng 6 2015 lúc 13:43

anh đang chia sẻ kiến thức đóa à