Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hiền Vũ Thu
Xem chi tiết
NguyenHa ThaoLinh
Xem chi tiết
batman4019
12 tháng 8 2019 lúc 19:50

những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé

Nguoi Ngu
Xem chi tiết
Trung Hiếu
Xem chi tiết
Trần Trung Nguyên
28 tháng 11 2018 lúc 21:02

\(\dfrac{\sqrt{10}+5\sqrt{3}}{\sqrt{15}+\sqrt{5}}-\dfrac{3}{2\sqrt{2}-\sqrt{5}}+\sqrt{9+4\sqrt{2}}=\dfrac{\sqrt{5}\left(\sqrt{2}+\sqrt{15}\right)}{\sqrt{5}\left(\sqrt{3}+1\right)}-\dfrac{3\left(2\sqrt{2}+\sqrt{5}\right)}{\left(2\sqrt{2}\right)^2-\left(\sqrt{5}\right)^2}+\sqrt{8+2.2\sqrt{2}+1}=\dfrac{\sqrt{15}+\sqrt{2}}{\sqrt{3}+1}-\dfrac{3\left(2\sqrt{2}+\sqrt{5}\right)}{8-5}+\sqrt{\left(2\sqrt{2}+1\right)^2}=\dfrac{\left(\sqrt{15}+\sqrt{2}\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\dfrac{3\left(2\sqrt{2}+\sqrt{5}\right)}{3}+2\sqrt{2}+1=\dfrac{3\sqrt{5}-\sqrt{15}+\sqrt{6}-\sqrt{2}}{2}-2\sqrt{2}-\sqrt{5}+2\sqrt{2}+1=\dfrac{3\sqrt{5}-\sqrt{15}+\sqrt{6}-\sqrt{2}}{2}-\sqrt{5}+1=\dfrac{3\sqrt{5}-\sqrt{15}+\sqrt{6}-\sqrt{2}-2\sqrt{5}+2}{2}=\dfrac{\sqrt{5}-\sqrt{15}+\sqrt{6}+2-\sqrt{2}}{2}\)

Anh Phuong
Xem chi tiết
Lê Thị Thục Hiền
25 tháng 8 2019 lúc 17:03

a,\(\left(5+4\sqrt{2}\right)\left(3+2\sqrt{1+\sqrt{2}}\right)\left(3-2\sqrt{1+\sqrt{2}}\right)\)

=\(\left(5+4\sqrt{2}\right)\left(9-4\left(1+\sqrt{2}\right)\right)\)

=\(\left(5+4\sqrt{2}\right)\left(9-4-4\sqrt{2}\right)\)

=\(\left(5+4\sqrt{2}\right)\left(5-4\sqrt{2}\right)=25-\left(4\sqrt{2}\right)^2\)

=-7

b, \(\sqrt{\frac{9}{4}-\sqrt{2}}=\sqrt{\frac{9-4\sqrt{2}}{4}}=\frac{\sqrt{9-4\sqrt{2}}}{2}=\frac{\sqrt{9-2\sqrt{8}}}{2}=\frac{\sqrt{\left(\sqrt{8}-1\right)^2}}{2}=\frac{\left|\sqrt{8}-1\right|}{2}=\frac{\sqrt{8}-1}{2}\)

Nguyễn Phương Uyên
26 tháng 8 2019 lúc 10:04

So sánh:

1) \(2\sqrt{27}\)\(\sqrt{147}\)

+ \(2\sqrt{27}\) = \(6\sqrt{3}\)

+ \(\sqrt{147}\) = \(7\sqrt{3}\)

\(6\sqrt{3}\) < \(7\sqrt{3}\)

Vậy: \(2\sqrt{27}\)< \(\sqrt{147}\)

2) \(2\sqrt{15}\)\(\sqrt{59}\)

+ \(2\sqrt{15}\) = \(\sqrt{60}\)

\(\sqrt{60}\) > \(\sqrt{59}\)

Vậy: \(2\sqrt{15}\) > \(\sqrt{59}\)

3) \(2\sqrt{2}-1\) và 2

\(giống\left(-1\right)\left\{{}\begin{matrix}3-1\\2\sqrt{2}-1\end{matrix}\right.\)

So sánh: 3 và \(2\sqrt{2}\)

+ 3 = \(\sqrt{9}\)

+ \(2\sqrt{2}=\sqrt{8}\)

\(\sqrt{8}\) < \(\sqrt{9}\)

\(\sqrt{8}\) -1 < \(\sqrt{9}\) -1

\(2\sqrt{2}\) - 1 < 3 - 1

Vậy: \(2\sqrt{2}-1< 2\)

4) \(\frac{\sqrt{3}}{2}\) và 1

+ 1 = \(\frac{2}{2}\)

\(\frac{\sqrt{3}}{2}\) < \(\frac{2}{2}\)

Vậy: \(\frac{\sqrt{3}}{2}\) < 1

5) \(\frac{-\sqrt{10}}{2}\)\(-2\sqrt{5}\)

+ \(-2\sqrt{5}\) = \(\frac{-4\sqrt{5}}{2}\) = \(\frac{-\sqrt{80}}{2}\)

\(\frac{-\sqrt{10}}{2}\) > \(\frac{-\sqrt{80}}{2}\)

Vậy: \(\frac{-\sqrt{10}}{2}\) > \(-2\sqrt{5}\)

Vân Ngô
Xem chi tiết
Lãnh Hàn
Xem chi tiết
Ác Quỷ Bóng Đêm
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 2 2022 lúc 20:16

a: \(A=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)

b: \(\sqrt{2}\cdot B=\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\)

\(\Leftrightarrow B\sqrt{2}=3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}\)

\(\Leftrightarrow B\sqrt{2}=4\sqrt{5}\)

hay \(B=2\sqrt{10}\)

d: \(D\sqrt{2}=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\cdot\left(\sqrt{5}-1\right)\)

\(=2\sqrt{5}-2\sqrt{5}+2=2\)

hay \(D=\sqrt{2}\)

thu
Xem chi tiết