Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trung Hiếu

Tính:

\(\frac{\sqrt{10}+5\sqrt{3}}{\sqrt{15}+\sqrt{5}}-\frac{3}{2\sqrt{2}-\sqrt{5}}+\sqrt{9+4\sqrt{2}}\)

Trần Trung Nguyên
28 tháng 11 2018 lúc 21:02

\(\dfrac{\sqrt{10}+5\sqrt{3}}{\sqrt{15}+\sqrt{5}}-\dfrac{3}{2\sqrt{2}-\sqrt{5}}+\sqrt{9+4\sqrt{2}}=\dfrac{\sqrt{5}\left(\sqrt{2}+\sqrt{15}\right)}{\sqrt{5}\left(\sqrt{3}+1\right)}-\dfrac{3\left(2\sqrt{2}+\sqrt{5}\right)}{\left(2\sqrt{2}\right)^2-\left(\sqrt{5}\right)^2}+\sqrt{8+2.2\sqrt{2}+1}=\dfrac{\sqrt{15}+\sqrt{2}}{\sqrt{3}+1}-\dfrac{3\left(2\sqrt{2}+\sqrt{5}\right)}{8-5}+\sqrt{\left(2\sqrt{2}+1\right)^2}=\dfrac{\left(\sqrt{15}+\sqrt{2}\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\dfrac{3\left(2\sqrt{2}+\sqrt{5}\right)}{3}+2\sqrt{2}+1=\dfrac{3\sqrt{5}-\sqrt{15}+\sqrt{6}-\sqrt{2}}{2}-2\sqrt{2}-\sqrt{5}+2\sqrt{2}+1=\dfrac{3\sqrt{5}-\sqrt{15}+\sqrt{6}-\sqrt{2}}{2}-\sqrt{5}+1=\dfrac{3\sqrt{5}-\sqrt{15}+\sqrt{6}-\sqrt{2}-2\sqrt{5}+2}{2}=\dfrac{\sqrt{5}-\sqrt{15}+\sqrt{6}+2-\sqrt{2}}{2}\)


Các câu hỏi tương tự
Hiền Vũ Thu
Xem chi tiết
Lãnh Hàn
Xem chi tiết
Nguyễn Trâm
Xem chi tiết
Linh Nguyen
Xem chi tiết
Sona Trần
Xem chi tiết
Kim Ngân Nguyễn Thị
Xem chi tiết
Huyền Nguyễn
Xem chi tiết
Vũ Đình An
Xem chi tiết
Vũ Thu Hiền
Xem chi tiết