cho tâm giác ABC vuông tại A (AB>AC) trên cạnh AB lấy điểm D \ AD=AC. vẽ tia phân giác của góc BAC cắt BC tại E
a) Góc ACD =?
b) CMR EC=ED
c) CMR AE vuông góc CD
cho tam giác ABC vuông tại A (AB>AC) trên cạnh AB lấy điểm D \ AD=AC. vẽ tia phân giác của góc BAC cắt BC tại E
a) Góc ACD =?
b) CM EC=ED
c) CM AE vuông góc CD
b: Xét ΔAEC và ΔAED có
AC=AD
\(\widehat{CAE}=\widehat{DAE}\)
AE chung
Do đó: ΔAEC=ΔAED
Suy ra: EC=ED
Cho tam giác ABC nhọn(AB<AC). Vẽ tia Ax phân giác góc BAC cắt cạnh BC tại D. Trên cạnh AC lấy điểm E sao cho AE=AB
a) CMR DB=DE
b) CMR: AD là đường trung trưc của cạnh BE
c) Trên tia AD kéo dài lấy điểm F sao cho AD=DF. KEr AH vuông góc BC và FK vuông góc BC. Chứng minh FH//AK
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
Do đo: ΔABD=ΔAED
Suy ra: DB=DE
b:Ta có: AB=AE
DB=DE
Do đó: AD là đường trung trực của BE
Cho tam giác ABC vuông tại A (AB > AC), trên cạnh AB lấy điểm D sao cho AD = AC. Vẽ tia phân giác của góc BAC cắt BC tại E. Tính số đo góc ACD.
Ta có : AD = AC
\(\Rightarrow\)\(\Delta\)ADC vuông cân tại A
\(\Rightarrow\)Góc ACD = ( 180° - CÂD ) ÷ 2
\(\Rightarrow\)Góc ACD = ( 180° - 90° ) ÷ 2
\(\Rightarrow\)Góc ACD = 45°
Vậy : Góc ACD = 45°
Thi toán chưa bạn. cho mk xin đề
Cho tam giác ABC vuông tại B. Tia phân giác của góc A cắt cạnh BC tại D . Trên cạnh AC lấy điểm E sao cho AE =AB. a) Chứng minh rằng rABD = rAED. b) So sánh góc BAC và góc EDC. c) Trên tia đối của tia BA lấy điểm F sao cho BF = EC. Chứng minh ba điểm E, D, F thẳng hàng.
giúp mình với
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Cho tam giác ABC vuông tại B. Tia phân giác của góc A cắt cạnh BC tại D . Trên cạnh AC lấy điểm E sao cho AE =AB. a) Chứng minh rằng rABD = rAED. b) So sánh góc BAC và góc EDC. c) Trên tia đối của tia BA lấy điểm F sao cho BF = EC. Chứng minh ba điểm E, D, F thẳng hàng.
-giúp mình với
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
cho tam giác ABC vuông tại A ( AC <AB), tia phân giác góc C cắt AB tại D. Trên tia đối của tia DC lấy điểm E sao cho CD =DE, từ điểm E vẽ đường thẳng vuông góc với AB và cắt BC tại N.
a, CM : tam giác ACD = tam giác MED
b, CM: NC =NE
c, CMR: DM <DB
Cho tam giác ABC vuông tại A(AB<AC). Tia phân giác góc B cắt cạnh AC tại D, trên cạnh BC lấy điểm E sao cho AB=BE
a/ CMR;tam giác ABD= tam giác EBD, Tính số đo góc BED
b/Gọi I là giao điểm của đường thẳng ED và đường thẳng AB . Chứng minh AI=EC
c/ Vẽ AH vuông góc với BC . Chứng minh AE là tia phân giác của góc HAD
Cho tam giác ABC vuông tại A, AB=4.5cm, AC=6cm. Trên cạnh BC lấy điểm D sao cho CD=2cm. Đường vuông góc với BC ở D cắt AC tại E. a) Tính EC,EA b) Tính diện tích tam giác EDC
a) Áp dụng định lý Pytagoo vào tam giác vuông ABC ta có:
BC2=AB2+AC2BC2=AB2+AC2
⇔⇔BC2=4,52+62=56,25BC2=4,52+62=56,25
⇔⇔BC=√56,25=7,5BC=56,25=7,5 cm
Xét ΔABCΔABCvà ΔDECΔDEC CÓ:
ˆBAC=ˆEDC=900BAC^=EDC^=900
ˆACBACB^ CHUNG
Suy ra: ΔABC ΔDECΔABC ΔDEC
⇒⇒BCEC=ACDCBCEC=ACDC ⇒⇒EC=BC.DCACEC=BC.DCAC
HAY EC=7,5×26=2,5EC=7,5×26=2,5
b) Áp dụng định lý Pytago vào tam giác vuông DEC ta có:
DE2=EC2−DC2DE2=EC2−DC2
⇔⇔DE2=2,52−22=2,25DE2=2,52−22=2,25
⇔⇔DE=√2,25=1,5DE=2,25=1,5
Vậy SDEC=DE.DC2=1,5×22=1,5SDEC=DE.DC2=1,5×22=1,5CM2
a) Áp dụng định lý Pytagoo vào tam giác vuông ABC ta có:
BC2=AB2+AC2BC2=AB2+AC2
⇔⇔BC2=4,52+62=56,25BC2=4,52+62=56,25
⇔⇔BC=√56,25=7,5BC=56,25=7,5 cm
Xét ΔABCΔABCvà ΔDECΔDEC CÓ:
ˆBAC=ˆEDC=900BAC^=EDC^=900
ˆACBACB^ CHUNG
Suy ra: ΔABC ΔDECΔABC ΔDEC
⇒⇒BCEC=ACDCBCEC=ACDC ⇒⇒EC=BC.DCACEC=BC.DCAC
HAY EC=7,5×26=2,5EC=7,5×26=2,5
b) Áp dụng định lý Pytago vào tam giác vuông DEC ta có:
DE2=EC2−DC2DE2=EC2−DC2
⇔⇔DE2=2,52−22=2,25DE2=2,52−22=2,25
⇔⇔DE=√2,25=1,5DE=2,25=1,5
Vậy SDEC=DE.DC2=1,5×22=1,5SDEC=DE.DC2=1,5×22=1,5CM2
Cho tam giác ABC có AB<AC. Tia phân giác góc  cắt BC tại D. Trên tia AB lấy điểm E sao cho AE=AC
a) Chứng minh góc AED=ACD và DE=DC
b) Tia AD cắt EC tại I. Chứng minh I là trung điểm của EC và AI vuông góc EC
câu a là c/m 2 tam giác bằng nhau nhé: tg AED và tg ACD từ đó suy là các ggo1c và cạnh tương ứng bằng nhau nha!
câu b là: vì tg AEC là tg cân( AE=EC) , ad là tia phân giác mà I thuộc Ad nên Ai cũng là tia phân giác góc EAC suy ra AI là đường trung trực suy ra I là trung điểm Ec và Ai vuông góc EC