CMR: Nếu p nguyên tố;p>3 và p+2 là số nguyên tố thì p+(p+2) chia hết cho 12
CMR nếu 2 số nguyên tố khác 0 có tổng là 1 số nguyên tố thì 2 số đóphải nguyên tố cùng nhau
CMR: Nếu p và p^2+2 là số nguyên tố thì p^3+1 cũng là số nguyên tố
bài này tui làm rồi mà quên rồi =)))
Answer:
Mình nghĩ đề là \(p^3+2\) mới đúng chứ nhỉ?
Ta nhận xét được:
Mọi số nguyên tố lớn hơn 3 thì chia cho 3 đề có dạng: \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\left(k\inℕ^∗\right)\)
\(\orbr{\begin{cases}p=3k+1\Leftrightarrow p^2+2=9k^2+6k+3⋮3\\p=3k+2\Leftrightarrow p^2+2=9k^2-6k+6⋮3\end{cases}}\)
Vì p là số nguyên tố nên \(p\ge2\) khi đó trong cả hai trường hợp thì \(p^2+2>3\) và \(⋮3\)
\(\Rightarrow p^2+2\) là hợp số
\(\Rightarrow p^2+2\) là số nguyên tố khi \(p=3\) (Lúc này \(p^2+2=11\) là số nguyên tố)
\(\Rightarrow p^3+2=27+2=29\) là số nguyên tố
Vậy nếu \(p\) và \(p^2+2\) là số nguyên tố thì \(p^3+2\) cũng là số nguyên tố.
CMR nếu p là số nguyên tố thì 8p-1 và 8p+1 không đồng thời là các số nguyên tố.
CMR:
a: Nếu p và p2 + 8 là 2 số nguyên tố thi p2 + 2 là số nguyên tố
b: Nếu p va 8p2 + 1 là số nguyên tố thì 2p + 1 là số nguyên tố
neu p khong chia het cho 3 thi p2 chia 3 du 1 suy ra p2 +8 chia het cho 3 (trai gia thiet p2 +8 nguyen to)
vay p phai chia het cho 3, ma p nguyen to nen p=3 . suy ra p2 +2=11 la so nguyen to
tuong tu, o cau b ta cung cm duoc p=3
CMR: mọi số nguyên tố lớn hơn 3 đều có dạng 3k+1 hoặc 3k+2.
CMR: Nếu p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 lầ hợp số.
Giải chi tiết ra giùm mik nha!!!
P là số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
Do đó 4p + 1 là hợp số (.)
tick nhé
P là số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
do đó 4p + 1 là hợp số ( đpcm)
CMR nếu a và b là 2 số nguyên tố cùng nhau thì a^2 và a+b cũng nguyên tố cùng nhau
Gỉa sử a2 và a+b không nguyên tố cùng nhau
ƯCLN(a2;a+b0=d(d\(\in\)N*,d\(\ne\)1,d nguyên tố) (1)
Nói cách khác: Gọi d là một ước nguyên tố của a2 và a+b
\(\Rightarrow\) a2 chia hết cho d
a+b chia hết cho d
\(\Rightarrow\) a chia hết cho d
a+b chia hét cho d
\(\Rightarrow\) a chia hết cho d
b chia hết cho d
\(\Rightarrow\)d là ƯC nguyên tố của a và b
\(\Rightarrow\)a và b không nguyên tố cùng nhau(mâu thuãn với đề bài)
Vậy a2 và a+b nguyên tố cùng nhau nếu a và b nguyên tố cùng nhau
CMR nếu chia một số nguyên tố bất kỳ cho 30 ta được số dư là 1 hoặc là một số nguyên tố
Giả sử A là 1 số nguyên tố , A = 30 k + r với k,rεN và 0≤r<30.
Nếu r chia hết cho 2, 3 hoặc 5 thì A cũng chia hết cho 2, 3 (hoặc 5) nên A = 2, 3 hoặc 5 ( thỏa mãn)
Nếu r không chia hết cho 2, 3 và 5 :
Giả sử r là hợp số thì r=r1.r2 với r1,r2 > 1.
Vì r không chia hết cho 2, 3 và 5 nên r1,r2 cũng không chia hết cho 2, 3 và 5
=> r1,r2 ≥ 7 => r = r1.r2 ≥ 7.7 = 49 ( vô lý ).
Vậy r không phải là hợp số nên r = 1 hoặc r là số nguyên tố.
CMR nếu p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số .
Để p và 2p+1 đều nguyên tố > 3 => p và 2p+1 đều ko chia hết cho 3
=> p chia 3 dư 1 hoặc 2 và 2p+1 chia hết cho 3 => p chia 3 dư 2 ; p có dạng 3k+2(k thuộc N)
Khi đó : 4p+1 = 4.(3k+2)+1 = 12k+8+1 = 12k+9 = 3.(4k+3) chia hết cho 3
Mà 4p+1 > 3 => 4p+1 là hợp số (ĐPCM)
CMR: nếu P là số nguyên tố lớn hơn 3 và 2P + 1 cũng là số nguyên tố thì 4P + 1 là hợp số