Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Dương
Xem chi tiết
soyeon_Tiểubàng giải
25 tháng 2 2017 lúc 18:20

Áp dụng liên tiếp bđt AM-GM cho 2 số dương ta có:

A = \(\left(xyz+1\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\)\(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=\left(xy+\frac{y}{x}\right)+\left(yz+\frac{z}{y}\right)+\)\(\left(xz+\frac{x}{z}\right)+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(\ge2\sqrt{xy.\frac{y}{x}}+2\sqrt{yz.\frac{z}{y}}+2\sqrt{xz.\frac{x}{z}}+\)\(+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(A\ge2y+2z+2x+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(=x+y+z+\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)\)

\(A\ge x+y+z+2\sqrt{x.\frac{1}{x}}+2\sqrt{y.\frac{1}{y}}+\)\(2\sqrt{z.\frac{1}{z}}=x+y+z+2.3=x+y+z+6\)(đpcm)

Dấu "=" xảy ra khi x = y = z = 1

Phạm Tuấn Kiệt
Xem chi tiết
Đặng Nguyễn Khánh Uyên
Xem chi tiết
ngonhuminh
20 tháng 1 2017 lúc 19:43

\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}\Rightarrow k=2\Rightarrow x=y=z=1\)

A=6

ngọn gió băng giá
20 tháng 1 2017 lúc 23:35

\(\frac{x-y-z}{x}=1-\frac{y+z}{x}\) tương tự con khác

=> x=y=z

=> A=6

Yasuo
Xem chi tiết
Nguyễn Nhật Minh
24 tháng 1 2017 lúc 16:20

Ta có \(x-y-z=0\)

\(\Rightarrow\hept{\begin{cases}x-z=y\\y-x=-z\\z+y=x\end{cases}}\)( 1 )

Ta có:

\(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)

\(B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)

Thay điều ( 1 ) vào biểu thức ta có:

\(B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)

\(\Rightarrow B=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}\)

\(\Rightarrow B=-1\)

Vậy B = -1 

Phạm Ngọc Thanh
Xem chi tiết
soyeon_Tiểu bàng giải
30 tháng 1 2017 lúc 14:18

+ Nếu x + y + z = 0 => x + y = -z; y + z = -x; x + z = -y

A = (1 + y/x)(1 + z/y)(1 + x/z)

A = (x+y)/x . (y+z)/y . (x+z)/z

A = -z/x . (-x)/y . (-y)/z = -1

+ Nếu x + y + z khác 0

x-y-z/x = -x+y-z/y = -x-y+z/z

<=> 1 - (y+z)/x = 1 - (x+z)/y = 1 - (x+y)/z

<=> y+z/x = x+z/y = x+y/z

Áp dụng t/c của dãy tỉ số = nhau ta có:

y+z/x = x+z/y = x+y/z = 2(x+y+z)/x+y+z = 2

A = (x+y)/x . (y+z)/y . (x+z)/z = 8

Đặng Nguyễn Khánh Uyên
30 tháng 1 2017 lúc 14:15

\(\Rightarrow A=2.\)

Nguyễn Thị Huyền Trang
30 tháng 1 2017 lúc 14:18

Bài này hình như lớp 7 đúng ko, nếu lớp 7 thì mk giải đc

Dưa Hấu
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
18 tháng 7 2017 lúc 17:53

Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

Suy ra : xy + yz + zx = 0 (nhân cả hai vế với xyz)

Khi đó : \(\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}=1\)

Đinh Đức Hùng
18 tháng 7 2017 lúc 17:58

Chỉ hộ cho tôi tại sao :

\(\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}=1\)với

Đừng có làm bừa chứ Nguyễn Quang Trung

Dưa Hấu
19 tháng 7 2017 lúc 4:53

Nè, mình đã ngồi làm ra tử tế:

\(\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-y\right)\left(z-x\right)}\)

=\(\frac{yz}{\left(x-y\right)\left(x-z\right)}-\frac{xz}{\left(x-y\right)\left(y-z\right)}+\frac{xy}{\left(x-z\right)\left(y-z\right)}\)

Giờ bạn thấy dưới mẫu giống nhau rồi nè

Quy đồng cho mẫu = (x-y)(y-z)(x-z)

Từ đó biến đổi tử số khi đã quy đồng để triệt tiêu mẫu số là xong

Đức Minh Nguyễn
Xem chi tiết
zZz Cool Kid_new zZz
25 tháng 7 2019 lúc 15:00

\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)

\(A=\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{y+z}{z}\)

Do \(x-y-z=0\)

\(\Rightarrow x-z=y;y-x=-z;y+z=x\)

Khi đó \(A=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=-1\)

Vậy A=-1

zZz Cool Kid_new zZz
25 tháng 7 2019 lúc 15:04

\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}\)

\(=\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)

\(=\frac{1}{xy+x+1}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz}{xy\cdot yz+xyz+yz}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz}{yz+y+1}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz+y+1}{yz+y+1}\)

\(=1\)

Hoàng Bảo Trân
Xem chi tiết
Nguyệt
4 tháng 11 2018 lúc 19:54

\(A+3=\left(1+\frac{x+y}{z}\right)+\left(1+\frac{x+z}{y}\right)+\left(1+\frac{y+z}{x}\right)\)

\(A+3=\left(x+y+z\right).\left(\frac{1}{z}+\frac{1}{y}+\frac{1}{x}\right)\)

\(A+3=\left(x+y+z\right).0=0\Rightarrow A=-3\)

ST
4 tháng 11 2018 lúc 19:56

\(A=\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}=\left(\frac{x+y}{z}+1\right)+\left(\frac{x+z}{y}+1\right)+\left(\frac{y+z}{x}+1\right)-3\)

\(=\frac{x+y+z}{z}\cdot\frac{x+y+z}{y}\cdot\frac{x+y+z}{x}-3=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-3=-3\)

Nguyễn Công Minh Hoàng
Xem chi tiết
⚠Daάth⚠
18 tháng 10 2019 lúc 14:51

ADTC dãy tỉ số bằng nhau đc ko hay pk mấy cái cosi hay cot , tan , .... 

Khách vãng lai đã xóa
Nguyễn Thị Thanh Trang
Xem chi tiết