Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huỳnh Nguyệt Thi
Xem chi tiết
Lâm Ngọc Nguyễn
19 tháng 10 lúc 13:43

c ơi c làm dc chưa ạ? e cũng đang cần bài này ạ

 

Anh Thư Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 1 2023 lúc 15:03

a: Xét (O) có

CM,CA là tiếp tuyến

nên CM=CA và OC là phân giác của góc MOA(1)

mà OM=OA

nên OC là trung trực của AM

Xét (O) có

DM,DB là tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

mà OM=OB

nên OD là trung trực của BM

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

c: Xét tứ giác MEOF có

góc MEO=góc MFO=góc EOF=90 độ

nên MEOF là hình chữ nhật

=>EF=MO=R

Cô Hoàng Huyền
Xem chi tiết
Phạm Đoan Trang
14 tháng 5 2021 lúc 7:48

Ta có: AC là tiếp tuyến của (O) (gt)

=) AC vuông góc OA 

=) Góc OAC = 90độ (1)

Lại có: DC là tiếp tuyến của (O) (gt)

=) DC vuông góc OD

=) Góc ODC = 90độ (2)

Từ (1) và (2) =) góc ODC + góc OAC = 180 độ

Mà 2 góc ở vị trí đối nhau                           

=) Tứ giác OACD nội tiếp

Khách vãng lai đã xóa
Nguyễn Thế Hải
14 tháng 5 2021 lúc 9:53

undefined

Khách vãng lai đã xóa
ducanh hoang
8 tháng 1 2022 lúc 21:54
Khách vãng lai đã xóa
Thanh Trang Lưu Bùi
Xem chi tiết
nguyen thetai
Xem chi tiết
Đỗ Thanh Tùng
Xem chi tiết
Lê Yến Nhi
Xem chi tiết
anh phuong
Xem chi tiết
nguyễn duy khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 2 2023 lúc 22:56

a: Xét tứ giác MEAH có

góc MEA+góc MHA=180 độ

=>MEAH là tứ giác nội tiếp

b: ME//AO

=>góc EMA=góc OAM=góc OMA

=>MA là phân giác của góc EMO

MEAH là tứgiác nội tiếp

=>goc EHF=góc EMA

FAHN là tứ giác nội tiếp

=>góc FHA=góc FNA

góc FHA+góc EHF=góc EMA+góc FNA=90 độ

=>góc EHF=90 độ

Đỗ Thanh Tùng
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 1 2021 lúc 22:05

a) Xét (O) có

CM là tiếp tuyến có M là tiếp điểm(gt)

CA là tiếp tuyến có A là tiếp điểm(gt)

Do đó: CM=CA(Tính chất hai tiếp tuyến cắt nhau)

Xét (O) có 

DM là tiếp tuyến có M là tiếp điểm(gt)

DB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: DM=DB(Tính chất hai tiếp tuyến cắt nhau)

Ta có: CM+DM=CD(M nằm giữa C và D)

mà CM=CA(cmt)

và DM=DB(cmt)

nên CD=AC+BD(đpcm)

Xét (O) có 

CM là tiếp tuyến có M là tiếp điểm(gt)

CA là tiếp tuyến có A là tiếp điểm(gt)

Do đó: OC là tia phân giác của \(\widehat{AOM}\)(Tính chất hai tiếp tuyến cắt nhau)

hay \(\widehat{AOM}=2\cdot\widehat{COM}\)

Xét (O) có

DM là tiếp tuyến có M là tiếp điểm(gt)

DB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: OD là tia phân giác của \(\widehat{BOM}\)(Tính chất hai tiếp tuyến cắt nhau)

hay \(\widehat{BOM}=2\cdot\widehat{DOM}\)

Ta có: \(\widehat{AOM}+\widehat{BOM}=180^0\)(hai góc kề bù)

mà \(\widehat{AOM}=2\cdot\widehat{COM}\)(cmt)

và \(\widehat{BOM}=2\cdot\widehat{DOM}\)(cmt)

nên \(2\cdot\widehat{COM}+2\cdot\widehat{DOM}=180^0\)

\(\Leftrightarrow\widehat{COM}+\widehat{DOM}=90^0\)

hay \(\widehat{COD}=90^0\)

Vậy: \(\widehat{COD}=90^0\)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔCOD vuông tại O có OM là đường cao ứng với cạnh huyền CD, ta được:

\(CM\cdot MD=OM^2\)

\(\Leftrightarrow CA\cdot BD=OM^2\)

mà OM=R

nên \(AC\cdot BD=R^2\)(đpcm)

c) Ta có: CA=CM(cmt)

nên C nằm trên đường trung trực của AM(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OA=OM(=R)

nên O nằm trên đường trung trực của AM(Tính chất đường trung trực của một đoạn thẳng)(2)

Ta có:  DM=DB(cmt)

nên D nằm trên đường trung trực của BM(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: OM=OB(=R)

nên O nằm trên đường trung trực của BM(Tính chất đường trung trực của một đoạn thẳng)(4)

Từ (1) và (2) suy ra OC là đường trung trực của AM

hay OC⊥AM

mà OC cắt AM tại E(gt)

nên OC⊥AM tại E

hay \(\widehat{OEM}=90^0\)

Từ (3) và (4) suy ra OD là đường trung trực của MB

hay OD⊥MB

mà OD cắt MB tại F(gt)

nên OD⊥MB tại F

hay \(\widehat{OFM}=90^0\)

Xét tứ giác EMFO có

\(\widehat{OFM}=90^0\)(cmt)

\(\widehat{OEM}=90^0\)(cmt)

\(\widehat{EOF}=90^0\)(cmt)

Do đó: EMFO là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

⇒EF=MO(Hai đường chéo của hình chữ nhật EMFO)

mà MO=R(gt)

nên EF=R(đpcm)