CHỨNG MINH RẰNG hiệu 7^2013-3^2015 chia hết cho 5
cho S=3+3 mũ 3+3 mũ 5+3 mũ 7 +...+3mũ 2013 + 3 mũ 2015
Chứng minh rằng S chia hết cho 13.
Giúp mk nhé
Chứng minh rằng 1 . 3 . 5. ... . 2013 . 2015 + 2 . 4 . 6 . ... . 2014 . 2016 chia hết cho 9911
Ta có 9911 = 11 . 17 . 53 . Trong mỗi tích đều có các thừa số đó :
- Tích các số lẻ có chứa các số 11 ; 17 ; 53
- Tích các số chẵn có các số 22 ; 34 ; 106 lần lượt là bội của các số 11 ; 17 ; 53
=> Tổng hai tích chia hết cho 9911.
Chứng minh rằng:2011^3+2013^3+2017^3+2019^3 chia hết cho 2015
a) Cho BCNN(x,y)=720, x+y=9 Tìm x/y
b)Tính 1-3+5-7+9-11+.....+2013-2015+2017
c)Cho S=6+25+125+5^4+...+5^2015
+)Chứng minh 4S+1 chia hết cho 5^2016
+)Chứng minh S chia hết cho 6
a là x và y thuộc nhóm rỗng
b thì =-1+-1+-1+...+-1+2017=-1008+2017=1009
c là vì 4S+1 là 5^2016 chia hết cho 5^2016
vì 6(5+5^2+...+5^2014) chia hết cho 6 và bằng S
Cho S=3+3 mũ 3+3 mũ 5 +3 mũ 7 +...+3 mũ 2013+3 mũ 2015.
Chứng minh rắng S chia hết cho 13
Ta có : S=3+3^3+3^5+3^7+.....+3^2013+3^2015
= ( 3 + 3^3 + 3^5 ) + ( 3^7 + 3^9 + 3^11)+.....+( 3^2011 + 3^2013 + 3^2015)
= 3.(1+3^2+3^4)+3^7.(1+3^2+3^4)+.....+3^2011.(1+3^2+3^4)
= 3.91+3^7.91+......+3^2011.91
= (3+3^7+.....+3^2011).91
Vì 91 chia hết cho 13 => (3+3^7+.....+3^2011).91 chia hết cho 13
Vậy S chia hết cho 13
chứng minh rằng 2013\(^{2015}\)+2015\(^{2013}\) chia hết cho 2014
Ta có : \(2013^{2015}+1^{2015}⋮\left(2013+1\right)=2014\)
\(2015^{2013}-1^{2013}⋮\left(2015-1\right)=2014\)
Do đó : \(\left(2013^{2015}+1^{2015}\right)+\left(2015^{2013}-1^{2013}\right)⋮2014\)
\(\Rightarrow2013^{2015}+1+2015^{2013}-1⋮2014\)
\(\Rightarrow2013^{2015}+2015^{2013}+\left(1-1\right)⋮2014\)
\(\Rightarrow2013^{2015}+2015^{2013}⋮2014\)
Vậy bài toán đã được chứng minh
Kí hiệu : 1.3.5...(2n - 1 ) = ( 2n -1)!!
2.4.6...(2n)=(2n)!!
Chứng minh rằng số A=(2013)!!+(2014)!! chia hết cho 2015
Các bạn giúp mình bài này với nhé:
Câu 1:
Cho A = 7 + 73 + 75 +...+ 72013 + 72015.
Chứng minh rằng A chia hết cho 35.
Cảm ơn các bạn nha!!!!!!!
Ta có :
(+) A chia hết cho 7 vì mọi số hạng của A đều chia hết cho 7 (1)
(+) \(A=7\left(1+7^2\right)+7^5\left(1+7^2\right)+....+7^{2014}\left(1+7^2\right)\)
\(\Leftrightarrow A=7.50+7^5.50+....+7^{2014}.50\)
<=> A chia hết cho 5 (2)
Mà (5;7)=1 (3)
Từ (1) ; (2) và 3
=> A chia hết cho 5.7 = 35
Bài 1: a) Chứng minh với n là số tự nhiên thì A = 3n+3 + 5n+3 + 3n+1 + 5n+2 chia hết cho 60
b) Chứng minh rằng nếu a/b = c/d thì [(a-b)/(c-d)]^2013 = (a^2015 + b^2015)/(c^2015 + d^2015)