Cho a,b,c >0 thỏa mãn abc=1. CMR: \(\frac{a}{ab+1}+\frac{b}{bc+1}+\frac{c}{ca+1}\ge\frac{3}{2}\)
cho a,b,c > 0 thỏa mãn abc=1.CMR
\(\frac{a}{ab+1}+\frac{b}{bc+1}+\frac{c}{ca+1}\ge\frac{3}{2}\)
Cho a, b, c > 0 thỏa mãn ab + bc + ca = 3. CMR :
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{3}{2}\)
Cho mk k nhé!
4/1x3x5 = 1/1x3 - 1/3x5
4/3x5x7 = 1/3x5 - 1/5x7
.............
A = 1/1x3 - 1/11x13
1/1x3x5 = 1/4 x (1/1x3 - 1/3x5)
1/3x5x7 = 1/4 x (1/3x5 - 1/5x7)
..........
B = 1/4 x (1/1x3 - 1/11x13)
cho a,b,c là các số thực dương thỏa mãn abc=1.CMR:
\(\frac{a}{ab+1}+\frac{b}{bc+1}+\frac{c}{ca+1}\ge\frac{3}{2}\)
Cho a;b;c > 0 thỏa mãn a + b + c = 1
CMR: \(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{15}{4}\)
Áp dụng BĐT Cosi ta có \(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\ge2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)
Tương tự \(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{4bc}\ge1\) \(\frac{ca}{c^2+a^2}+\frac{c^2+a^2}{4ca}\ge1\)
Khi đó BĐT sẽ được chứng minh nếu ta chỉ ra được
\(\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\left(\frac{a^2+b^2}{4ab}+\frac{b^2+c^2}{4bc}+\frac{c^2+a^2}{4ca}\right)\ge\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\left(\frac{a}{4b}+\frac{b}{4a}+\frac{b}{4c}+\frac{c}{4b}+\frac{a}{4c}+\frac{c}{4a}\right)\right)\ge\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}\left(\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}-\frac{a+c}{b}-\frac{b+c}{a}-\frac{c+a}{b}\right)\ge\frac{3}{4}\)(do \(a+b+c=1\))
\(\Leftrightarrow\frac{3}{4}\ge\frac{3}{4}\) luôn đúng. Từ đó suy ba BĐT được chứng minh. Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
cho a,b,c >0 thỏa mãn a3bc+b3ac+c3ab=a2+b2+c2
CMR: \(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\ge\frac{abc}{a+b+c}\)
Cho a,b,c > 0 thỏa mãn: ab + bc + ca = 3
CMR: \(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ca}+\frac{c}{2c^2+ba}\ge abc\)
Từ giả thiết:\(ab+bc+ca=3\Rightarrow\left(ab+bc+ca\right)^2=9\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=9\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=9-2abc\left(a+b+c\right)\)
Ta có:\(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ca}+\frac{c}{2c^2+ab}\)\(=\frac{1}{\frac{2a^2+bc}{a}}+\frac{1}{\frac{2b^2+ca}{b}}+\frac{1}{\frac{2c^2+ab}{c}}\)
\(\ge\frac{\left(1+1+1\right)^2}{2a+\frac{bc}{a}+2b+\frac{ca}{b}+2c+\frac{ab}{c}}=\frac{9}{2a+2b+2c+\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}}\)
\(=\frac{9}{2a+2b+2c+\frac{b^2c^2+c^2a^2+a^2b^2}{abc}}=\frac{9}{2a+2b+2c+\frac{9-2abc\left(a+b+c\right)}{abc}}\)
\(=\frac{9}{2a+2b+2c+\frac{9}{abc}-2\left(a+b+c\right)}=\frac{9}{\frac{9}{abc}}=abc\)
Dấu "=" xảy ra khi
\(\frac{2a^2+bc}{a}=\frac{2b^2+ca}{b}=\frac{2c^2+ab}{c}=\frac{2a^2+bc-2b^2-ca}{a-b}=\frac{2\left(a-b\right)\left(a+b\right)-c\left(a-b\right)}{a-b}\)
\(=2\left(a+b\right)-c\).Tương tự ta có:\(2\left(a+b\right)-c=2\left(b+c\right)-a=2\left(c+a\right)-b\)
\(\Leftrightarrow a+b=b+c=c+a\)
\(\Leftrightarrow a=b=c\)
Cho a,b,c>0 thỏa mãn ab+bc+ca=2abc . CMR : \(\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}\ge\frac{1}{2}\)
Đặt \(x=\frac{1}{a}, y=\frac{1}{b}, z=\frac{1}{c}, \Rightarrow x+y+z=2\)
Suy ra \(\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\)
Ta có \(\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{\left(2-x\right)^2} .\frac{2-x}{8}.\frac{2-x}{8}}=\frac{3x}{4}.\)
\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\)\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge x+y+z-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}\)
dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)hay \(a=b=c=\frac{3}{2}\)
Cho a;b;c>0 thỏa mãn abc=1. CMR:
\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\ge\frac{1}{a+b+c}\)
Áp dụng BĐT Bunhiacopxki, ta có:
\(\left(a+b+c\right)\left(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\right)\ge\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2\)
Mà \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+1}=1\)
\(\Rightarrow\left(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\right)\left(a+b+c\right)\ge1\)
\(\Rightarrow\frac{a}{\left(ab+b+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\ge\frac{1}{a+b+c}\)
\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\ge\frac{1}{a+b+c}\)
ta có \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}=1\)
đặt \(H=\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\)
áp dụng bất đẳng thức bunhiacopxki ta có
\(H\left(a+b+c\right)\ge\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\right)^2=1\)
\(\Rightarrow H\ge\frac{1}{a+b+c}\)
hay \(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\ge\frac{1}{a+b+c}\)
cho a,b,c > 0 thỏa mãn ab+bc+ca=1. Cmr:
\(a+b+c+\frac{ab}{b+c}+\frac{bc}{c+a}+\frac{ca}{a+b}\ge\frac{3\sqrt{3}}{2}\)
Lời giải:
Ta thấy:
\(\text{VT}=(a+\frac{ca}{a+b})+(b+\frac{ab}{b+c})+(c+\frac{bc}{c+a})\)
\(=\frac{a(a+b+c)}{a+b}+\frac{b(a+b+c)}{b+c}+\frac{c(a+b+c)}{c+a}\)
\(=(a+b+c)\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)\)
\(\geq (a+b+c).\frac{(a+b+c)^2}{a^2+ab+b^2+bc+c^2+ac}=\frac{(a+b+c)^3}{a^2+b^2+c^2+ab+bc+ac}\) (theo BĐT Cauchy-Schwarz)
Có:
$(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ac)=a^2+b^2+c^2+2$
$\Rightarrow a+b+c=\sqrt{a^2+b^2+c^2+2}=\sqrt{t+2}$ với $t=a^2+b^2+c^2$
Do đó:
$\text{VT}\geq \frac{\sqrt{(t+2)^3}}{t+1}$ \(=\sqrt{\frac{(t+2)^3}{(t+1)^2}}\)
Áp dụng BĐT AM-GM:
\((t+2)^3=\left(\frac{t+1}{2}+\frac{t+1}{2}+1\right)^3\geq 27.\frac{(t+1)^2}{4}\)
\(\Rightarrow \text{VT}=\sqrt{\frac{(t+2)^3}{(t+1)^2}}\geq \sqrt{\frac{27}{4}}=\frac{3\sqrt{3}}{2}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{\sqrt{3}}$
Quay lại diễn đàn trong thinh lặng:))
Chứng minh: $$\left( a+{\frac {ab}{b+c}}+b+{\frac {bc}{c+a}}+c+{\frac {ca}{a+b}}
\right) ^{2}-{\frac {27\,ab}{4}}-{\frac {27\,ca}{4}} \geqq {\frac {27\,bc}{
4}}$$
Sau khi quy đồng, cần chứng minh$:$
$$\frac{1}{2} \sum\limits_{cyc} \left( 5\,{a}^{4}{b}^{2}+8\,{a}^{3}{b}^{3}+7\,{a}^{2}{b}^{4}+98\,{a}^
{2}{b}^{3}c+99\,{a}^{2}{b}^{2}{c}^{2}+124\,{a}^{2}b{c}^{3}+34\,a{b}^{4
}c+130\,a{b}^{3}{c}^{2}+26\,{b}^{4}{c}^{2}+44\,{b}^{3}{c}^{3}+{c}^{6}
\right) \left( a-b \right) ^{2} \geqq 0$$