Tìm GTLN của biểu thức A=(-3x3+5x2-9x-15):(3x+5)
Sắp xếp các đa thức theo luỹ thừa giảm dần của biến rồi tính:
a) ( 5 x 2 - 3 x 3 +15 - 9x): (5 - 3x);
b) ( -4x 2 + x 3 - 20 + 5x) : (x - 4).
a) Sắp xếp đa thức - 3 x 3 + 5 x 2 – 9x + 15 và -3x + 5.
Thực hiện phép chia thu được đa thức thương x 2 + 3.
b) Sắp xếp đa thức x 3 – 4 x 2 + 5x – 20.
Thực hiện phép chia thu được đa thức thương x 2 + 5.
Thực hiện phép chia:
1. (-3x3 + 5x2 - 9x + 15) : ( 3x + 5)
2. ( 5x4 + 9x3 - 2x2 - 4x - 8) : ( x-1)
3. ( 5x3 + 14x2 + 12x + 8 ) : (x + 2)
4. ( x4 - 2x3 + 2x -1 ) : ( x2 - 1)
5. ( 5x2 - 3x3 + 15 - 9x ) : ( 5 - 3x)
6. ( -x2 + 6x3 - 26x + 21) : ( 3 -2x )
1: Sửa đề: 3x-5
\(=\dfrac{-x^2\left(3x-5\right)-3\left(3x-5\right)}{3x-5}=-x^2-3\)
2: \(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)
=5x^2+14x^2+12x+8
3: \(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}=5x^2+4x+4\)
4: \(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}=x^2+1-2x\)
5: \(=\dfrac{x^2\left(5-3x\right)+3\left(5-3x\right)}{5-3x}=x^2+3\)
thực hiện phép chia
(-3x3 + 5x2 - 9x + 15) : (-3 + 5)
\(\left(-3x^2+5x^2-9x+15\right):2\)
\(=\dfrac{-3}{2}x^2+\dfrac{5}{2}x^2-\dfrac{9}{2}x+\dfrac{15}{2}\)
Bài 5:
1) a) Cho hai đa thức:
P (x) = 5x2 + 3x3 - 5x2 + 2x3 – 2 +4x – 4x2 + x3
Q(x) = 6x – x3 + 5 – 4x3 + 6 – 3x2 – 7x2
Tính M(x) = P(x) + Q(x)
b) Tìm C(x) biết: (5x2 + 9x – 3x4 + 7x3 -12) + C(x) = -2x3 + 9 – 6x + 7x4 -2x3
2) Tìm nghiệm của các đa thức sau
a) 4x - b) x2 – 4x +3
a: P(x)=6x^3-4x^2+4x-2
Q(x)=-5x^3-10x^2+6x+11
M(x)=x^3-14x^2+10x+9
b: \(C\left(x\right)=7x^4-4x^3-6x+9+3x^4-7x^3-5x^2-9x+12\)
=10x^4-11x^3-5x^2-15x+21
Tìm GTLN của biểu thức
I= 3x - 9x² - 1
`I=3x-9x^{2}-1`
`I=-(9x^2-3x+1)`
`I=-(9x^2-3x+1/4+3/4)`
`I=-(3x-1/2)^{2}-3/4`
Vì `-(3x-1/2)^2 <= 0` với mọi `x`
`=>-(3x-1/2)^2-3/4 <= -3/4` với mọi `x`
Hay `I <= -3/4` với mọi `x`
`=>I_{mi n}=-3/4 <=>x=1/6`
tìm gtln của biểu thức A= -4x^2+x-1
B= 5x-3x^2+6
C=4-x^2+3x
3 câu này em ko nghĩ đc, mn giúp em với
a:Ta có: \(A=-4x^2+x-1\)
\(=-4\left(x^2-\dfrac{1}{4}x+\dfrac{1}{4}\right)\)
\(=-4\left(x^2-2\cdot x\cdot\dfrac{1}{8}+\dfrac{1}{64}+\dfrac{63}{64}\right)\)
\(=-4\left(x-\dfrac{1}{8}\right)^2-\dfrac{63}{16}\le-\dfrac{63}{16}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{8}\)
b: Ta có: \(B=-3x^2+5x+6\)
\(=-3\left(x^2-\dfrac{5}{3}x-2\right)\)
\(=-3\left(x^2-2\cdot x\cdot\dfrac{5}{6}+\dfrac{25}{36}-\dfrac{97}{36}\right)\)
\(=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{12}\le\dfrac{97}{12}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{6}\)
c: Ta có: \(C=-x^2+3x+4\)
\(=-\left(x^2-3x-4\right)\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{25}{4}\right)\)
\(=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)
A(x) = 5x2 – 2x3 + 4x5 + 3x3 – 3x2 + 2x – 1 B(x) = – x 5 + 2x3 – 3x5 – 2x2 – 3x3 + 3x – 5
a) Thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm dần của biến. Chỉ ra bậc của mỗi đa thức.
b) Tính C(x) = A(x) + B(x). c) Tính C( – 1). d) Tìm nghiệm của đa thức C(x).
Tìm GTLN của các biểu thức sau:
a) A= -4x^2+4x-1
b) B= -x^2+5x
c) C= -3x^2-9x+6
a: \(A=-4x^2+4x-1\)
\(=-\left(4x^2-4x+1\right)\)
\(=-\left(2x-1\right)^2\le0\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
b: \(B=-x^2+5x\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}\right)+\dfrac{25}{4}\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
a) \(A=-4x^2+4x-1=-\left(4x^2-4x+1\right)\)
\(=-\left(2x-1\right)^2\le0\)
\(maxA=0\Leftrightarrow x=\dfrac{1}{2}\)
b) \(B=-x^2+5x=-\left(x^2-5x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)
\(maxB=\dfrac{25}{4}\Leftrightarrow x=\dfrac{5}{2}\)
c) \(C=-3x^2-9x+6=-3\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{51}{4}\)
\(=-3\left(x+\dfrac{3}{2}\right)^2+\dfrac{51}{4}\le\dfrac{51}{4}\)
\(maxC=\dfrac{51}{4}\Leftrightarrow x=-\dfrac{3}{2}\)
Cho các đa thức A = 2x4 + 3x3 - 5x2 - 11x + 8 và B = x3 - 3x + 1
a, Giả sử A = B.Q + R. Tìm các đa thức Q và R
giúp mình với ạ
\(A=BQ+R\\ \Leftrightarrow A:B=Q\left(\text{dư }R\right)\)
Ta có \(A:B=\left(2x^4+3x^3-5x^2-11x+8\right):\left(x^3-3x+1\right)\)
\(\Leftrightarrow A:B=\left(2x^4-6x^2+2x+3x^3-9x^2+3x+10x^2-16x+8\right):\left(x^3-3x+1\right)\\ \Leftrightarrow A:B=\left[\left(x^3-3x+1\right)\left(2x+3\right)+10x^2-16x+8\right]:\left(x^3-2x+1\right)\\ =2x+3\left(\text{dư }10x^2-16x+8\right)\\ \Leftrightarrow\left\{{}\begin{matrix}Q=2x+3\\R=10x^2-16x+8\end{matrix}\right.\)