cộng trừ các phân thức
\(\frac{2x^2-11x}{2xy}+\frac{5y-x}{y}+\frac{x+2y}{x}\)
tìm bậc của các đa thức sau
a.C=\(3x^2y-2xy^2+x^3y^3+3xy^2-2x^3y^3\)
b.D=15\(x^2y^3+7y^2-8x^3y^2-12x^2+11x^3y^2-12x^2y^3\)
c.E=\(3x^5y+\frac{1}{3}xy^4+\frac{3}{4}x^2y^3-\frac{1}{2}x^5y+2xy^4-x^2y^3\)
Cộng trừ phân số
\(\frac{x^2}{\left(x-y\right)^2\left(x+y\right)}-\frac{2xy^2}{x^4-2x^2y^2+y^4}+\frac{y^2}{\left(x^2-y^2\right)\left(x+y\right)}\)
ĐK: !x! khác !y!
\(B=\frac{x^2}{\left(x-y\right)^2\left(x+y\right)}-\frac{2xy^2}{\left(x-y\right)^2\left(x+y\right)^2}+\frac{y^2}{\left(x-y\right)\left(x+y\right)^2}\) =>\(MSC=\left(x-y\right)^2\left(x+y\right)^2\)
\(B=\frac{x^2\left(x+y\right)-2xy^2+y^2\left(x-y\right)}{MSC}=\frac{x^3+x^2y-2xy^2+y^2x-y^3}{MSC}=\frac{x^3+x^2y-xy^2-y^3}{MSC}\)
\(B=\frac{x^3+x^2y-xy^2-y^3}{MSC}=\frac{x^2\left(x+y\right)-y^2\left(x+y\right)}{MSC}=\frac{\left(x+y\right)^2\left(x-y\right)}{\left(x-y\right)^2\left(x+y\right)^2}=\frac{1}{x-y}\)
cộng trừ các phân thức
\(\frac{x}{x-2y}+\frac{x}{x+2y}+\frac{8x^2}{4xy^2-x^3}\)
Bài 2: Rút gọn phân thức
\(A=\frac{10x^2-7+5x-2xy}{1-2x^2+x}\)
Bài 3: Chứng minh rằng
a) \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}=\frac{xy+y^2}{2x-y}\)
b) \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}=\frac{1}{x-y}\)
Bài 4: Quy đồng mẫu thức các phân thức sau
a) \(\frac{5x}{\left(x+3\right)^3}\&\frac{x-4}{3x\left(x+2\right)^2}\)
b) \(\frac{x+1}{x-x^2}\&\frac{x+2}{2x^2+2-4x}\)
Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)
\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)
\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)
Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)
\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)
\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)
1, Thực hiện tính cộng, trừ, nhân, chia các phân thức sau:
a,\(\frac{2x-7}{10x-4}-\frac{3x+5}{4-10x}\)
b,\(\frac{2x+3}{4x^2y^2}:\frac{6x+9}{10x^2y}\)
c,\(\frac{x^2-y^2}{6x^2y^2}:\frac{x+y}{3xy}\)
d,\(\left(\frac{3x}{1-3x}+\frac{2x}{3x+1}\right):\frac{6x^2+10x}{1-6x+9x^2}\)
a) \(\frac{2x-7}{10x-4}-\frac{3x+5}{4-10x}\)
\(=\frac{2x-7}{10x-4}-\frac{-\left(3x+5\right)}{-\left(4-10x\right)}\)
\(=\frac{2x-7}{10x-4}-\frac{5-3x}{10x-4}\)
\(=\frac{2x-7-\left(5-3x\right)}{10x-4}\)
\(=\frac{2x-7-5+3x}{10x-4}\)
\(=\frac{5x-12}{10x-4}\)
bài 1 : thu gọn đa thức , tìm bậc , hệ số cao nhất
A = 15x^2y^3 + 7x^2 - 8x^3y^2 - 12x^2 + 11x^3y^2 - 12x^2y^3
B = 3x^5y + \(\frac{1}{3}\)xy^4 + \(\frac{3}{4}\)x^2y^3 - \(\frac{1}{2}\)x^5y + 2xy^4 - x^2y^3
bài 2 : tính giá trị biểu thức
A = 3x^3y + 6x^2y^2 + 3xy^3 tại x = \(\frac{1}{2}\); y = -\(\frac{1}{3}\)
B = x^2y^2 + xy +x^3 + y^3 tại x = -1 ; y = 3
bài 3 : cho đa thức
P(x) = x^4 + 2x^2 + 1
Q(x) = x^4 + 4x^3 + 2x^2- 4x + 1
tính P(-1); P(\(\frac{1}{2}\)) ; q(-2);Q(1)
bài 4 : tìm hệ số a của đa thức M(x)= ax^2 + 5x - 3 , tại M (-3) = 0
bài 5 : tìm các hệ số a , b của đa thức f(x) = ax + b , biết f(2) = 3 ; f(-1) = 9
Rút gọn các phân thức sau
a,\(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}\left(x\ne-y\right)\)
b,\(\frac{4x^2-4xy}{5x^3-5x^2y}\left(x\ne0,x\ne y\right)\)
ai làm đc 3 tick
ko ghi đề bài nha làm luôn
a) \(\frac{\left(2x+2y\right)+\left(5x+5y\right)}{\left(2x+2y\right)-\left(5x+5y\right)}=\frac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}=\frac{\left(2+5\right)\left(x+y\right)}{\left(2-5\right)\left(x+y\right)}=\frac{-7}{3}\)
b)\(\frac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\frac{4x}{5x^2}=\frac{4}{5x}\)
a)ĐK: \(x\ne-y;x,y\ne0\)
\(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}\)
\(=\frac{\left(x+y\right)\left(2+5\right)}{\left(x+y\right)\left(2-5\right)}=-\frac{7}{3}\)
b) ĐK: ...bạn tự xét...
\(\frac{4x^2-4xy}{5x^3-5x^2y}=\frac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\frac{4x}{5x^2}=\frac{4}{5x}\)
Vậy ...
cộng trừ các phân thức
\(x+y+\frac{3x^2}{2y}\)
\(x+y+\frac{3x^2}{2y}\)
\(=\frac{2xy}{2y}+\frac{2y^2}{2y}+\frac{3x^2}{2y}=\frac{2xy+2y^2+3x^2}{2y}=\frac{2y.\left(2x+y\right)+3x^2}{2y}=\frac{2x+y+3x^2}{2y}\)
p/s: mới lớp 7 ạ sai sót bỏ qua nha :>
aeeeeei nhầm nha :>
\(\frac{2xy}{2y}+\frac{2y^2}{2y}+\frac{3x^2}{2y}=\frac{2xy+2y^2+3x^2}{2y}=\frac{2y.\left(x+y\right)+3x^2}{2y}=\frac{x+y+2x^3}{2y}\)
tớ nghĩ tớ làm sai rồi
sorry bn nha :<
lần sau nếu chắc 100% t mói tl
thu gọn đa thức, tìm bậc , hệ số :
A=\(15x^2y^3+7x^2-8x^3y^2-12x^2+11x^3y^2-12x^2y^3\)
B=\(3x^5y+\frac{1}{3}xy^4+\frac{3}{4}x^2y^3-\frac{1}{2}x^5y+2xy^4-x^2y^3\)
BẠN NÀO LÀM ĐÚNG MÌNH SẼ CHO 5 TICK !!!!!!!!!!!