tìm các số nguyên tố P sao cho 8P^2 + 1 là số nguyên tố
1: Chứng minh rằng: nếu 8p-1 và p là số nguyên tố thì 8p+1 là hợp số.
2: Tìm tất cả các số nguyên tố p, q sao cho 7p +q và pq +11 đều là số nguyên tố.
1.ta có: 8p-1 là số nguyên tố (đề bài)
8p luôn luôn là hợp số
ta có: (8p-1)8p(8p+1) chia hết cho 3
từ cả 3 điều kiện trên ta có: 8p+1 chia hết cho 3 suy ra 8p+1 là hs
a) Tìm số nguyên tố p, sao cho p + 2 và p + 4 cũng là số nguyên tố
b) Cho p và 8p2 + 1 là các số nguyên tố (p > 3). Chứng minh rằng: 8p2 - 1 là hợp số
B1 Tìm 1 số nguyên tố, biết rằng số đó bằng tổng của 2 số nguyên tố và cũng bằng hiệu của 2 số nguyên tố.
B2 Các số sau là số nguyên tố hay hợp số? vì sao?
C=1010001
E= 3.5.7.9.11- 44
D= 1!+2!+3!+....+100!
B3 cho P và 8P-1 là các số nguyên tố. CMR: 8P+1 là hợp số.
Tìm số nguyên tố p sao cho 8p2+1 và 2p+1 cũng là các số nguyên tố
xét p=2=>2p+1=5;8p2+1=33 loại
xét p=3:
=>2p+1=7;8p2+1=73 t/mãn
xét p>3:
=>p2 chia 3 dư 1
=>8p2 chia 3 dư 2
=>8p2+1 chia hết cho 3 loại
vậy p=3
Tìm số nguyên tố P sao cho 8P-1 và 8P+5 đều là số nguyên tố
Bài này cũng tương tự Chào anh hung t, đúng là 3 số anh xét là gần nhất...
Hic ;(( sao nó lại không nằm trong suy nghĩ đầu tiên???
-------------------
* Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa
* Xét: p # 3
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3
Vậy:
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3
=> 8p+1 là hợp số
----------
Cách khác:
phân tích: 8p-1 = 9p - (p+1) ; 8p+1 = 9p - (p-1)
xét 3 số nguyên liên tiếp: p-1, p, p+1
p và p+1 không thể chia hết cho 3 (xét riêng p = 3 như trên)
=> p-1 chia hết cho 3 => 8p+1 = 9p - (p-1) chia hết cho 3
Đáng nhẽ đề bài là : TÌm SNT P sao cho 8P-1 và 8P+5 đều là SNT
a) Tìm số nguyên tố p,q sao cho 2p+q và pq + 1 đều là số nguyên tố
b) CHo p là số nguyên tố chứng tỏ 8p+1 và 8p-1 không thể đồng thời là số nguyên tố
tìm p nguyên tố sao cho 8p2 -1, 8p2 + 1 đều là số nguyên tố
1. Tìm số nguyên tố p , sao cho các số sau cũng là số nguyên tố :
a,p+2 và p+10
b,p+10 và p+20
2.Cho 3 số nguyên tố lớn hơn 3 , trong đó số sau lớn hơn số trước là d đơn vị . Chứng minh rằng d chia hết cho 6.
3.Cho p và p+4 là các số nguyên tố (p>3) . Chứng minh ằng p+8 là hợp số
4.Cho p và 8p-1 là các số nguyên tố . Chứng minh rằng 8p+1 là hợp số
Câu 1:
a: p=3 thì 3+2=5 và 3+10=13(nhận)
p=3k+1 thì p+2=3k+3(loại)
p=3k+2 thì p+10=3k+12(loại)
b: p=3 thì p+10=13 và p+20=23(nhận)
p=3k+1 thì p+20=3k+21(loại)
p=3k+2 thì p+10=3k+12(loại)
2.
p là số nguyên tố > 3 => p lẻ p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2 +) Xét p = 3k + 1 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố => d chia hết cho 3 +) Xét p = 3k + 2 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt => d chia hết cho 3 Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6
với p=2ta có
p+2=2+2=4(loại)
với p=3ta có
p+10=3+10=13
p+20=3+20=23
suy ra p=3 là hợp lí
với p>3 thì p có dạng là 3k=1 và 3k=2
với p=3k+1 ta có
p+20=3k+1+20=3k+21(loại)
với p=3k=2 ta có
p+10=3k+2+10=12(loại)
Vập p = 3
Nhớ tick cho mình nhé!
tìm số nguyên tố p để các số 8p^2-1 và 8p^2+1 là số nguyên tố