C/m định lí: góc tạo bởi 2 tia phân giác của 2 góc kề bù = 90 độ
chứng minh định lí:
góc tạo bởi 2 tia phân giác của hai góc kề bù bằng 90 độ
Ta có: \(\widehat{xOm}=\widehat{mOz}=\frac{\widehat{xOz}}{2}\) (vì Om là tia phân giác của xOz)
\(\widehat{zOn}=\widehat{nOy}=\frac{\widehat{yOz}}{2}\) (vì On là tia phân giác của yOz)
Có: \(\widehat{mOn}=\widehat{mOz}+\widehat{zOn}=\frac{\widehat{xOz}}{2}+\frac{\widehat{yOz}}{2}=\frac{\widehat{xOz}+\widehat{yOz}}{2}=\frac{180^o}{2}=90^o\)
=> Om _|_ On (đpcm)
mOz=12ˆxOzˆmOz=12^xOz^ (1)(1) ( vì Om là hai tia phân giác của xOzˆxOz^ )
zOnˆ=12zOyˆzOn^=12zOy^ (2)(2) ( vì On là hai tia phân giác của zOyˆzOy^ )
Từ (1)(1) và (2)(2) , ta có :
mOzˆ+zOnˆ=12.(xOzˆ+zOyˆ)mOz^+zOn^=12.(xOz^+zOy^) (3)(3)
Vì tia OzOz nằm giữa hai tia Om,OnOm,On và vì xOzˆxOz^ và zOyˆzOy^ kề bù (gt)(gt)
Nên từ (3)(3) ⇒mOnˆ=12.1800⇒mOn^=12.1800
Hay mOnˆ=900
với 2 goc kề bù ta định lý sau:
hai tia phân giác của 2 góc kề bù tạo thành góc vuông
a, hãy vẽ 2 góc xOy và yOx' kề bù, tia phân giác Ot của góc xOy,
tia phân giác Ot' của góc yox' và gọi số đo của góc xOy là m độ.
b, hãy viết giả thiết và kết luận của định lí
c, hãy điền vào chỗ trống và sắp xếp các câu sau 1 cách hợp lí
1, góc tOy = 1/2 m độ vì....
2,góc t'Oy = 1/2(180 độ - m độ) vì...
3,góc tOt' = 90 độ vì.....
4,góc x'Oy = 180 độ - m độ vì.....
Cho định lí: Góc tạo bởi hai tia phân giác của hai góc kề bù là một góc vuông
-Chứng minh định lí trên
Cho 2 góc xOy và yOz kề bù .
Om ; On lần lượt là tia phân giác của 2 góc đó
\(\Rightarrow\begin{cases}\widehat{O_1}=\widehat{O_2}=\frac{1}{2}.\widehat{xOy}\\\widehat{O_3}=\widehat{O_4}=\frac{1}{2}.\widehat{yOz}\end{cases}\)
\(\Rightarrow\widehat{O_2}+\widehat{O_3}=\frac{1}{2}\left(\widehat{xOy}+\widehat{yOz}\right)=\frac{1}{2}.180^0=90^0\)
=> Đpcm
* Vẽ hình: Vẽ hình hơi xấu chút!
* Viết giả thiết, kết luận:
GT: - Góc xOz và góc yOz là hai góc kề bù
- Ot là tia phân giác của góc xOz
- Ot' là tia phân giác của góc yOz
KL: Góc tot' là 1 góc vuông
* Chứng minh:
Góc xOt = góc tOz = 1/2 . góc xOz (vì Ot là tia phân giác của góc xOz)
Góc yot' = góc t'Oz = 1/2 . góc yOz (vì Ot' là tia phân giác của góc yOz)
Góc xOz + góc yOz = 180 độ (vì 2 góc kề bù)
Vì góc xOz và góc yOz là 2 góc kề bù mà
Ot là tia phân giác xOz
Ot' là tia phân giác yOz
=> Tia Oz nằm giữa hai tia Ot và Ot' nên:
Góc tOt' = góc tOz + góc t'Oz = 1/2 . góc xOz + 1/2 . góc yOz = 1/2 . (góc xOz + góc yOz) = 1/2 . 180 độ = 90 độ
Vậy tOt' là 1 góc vuông.
Chứng minh :
\(\widehat{mOz=\frac{1}{2}}\widehat{xOz}\) \(\left(1\right)\) ( vì Om là hai tia phân giác của \(\widehat{xOz}\) )
\(\widehat{zOn}=\frac{1}{2}\widehat{zOy}\) \(\left(2\right)\) ( vì On là hai tia phân giác của \(\widehat{zOy}\) )
Từ \(\left(1\right)\) và \(\left(2\right)\) , ta có :
\(\widehat{mOz}+\widehat{zOn}=\frac{1}{2}.\left(\widehat{xOz}+\widehat{zOy}\right)\) \(\left(3\right)\)
Vì tia \(Oz\) nằm giữa hai tia \(Om,On\) và vì \(\widehat{xOz}\) và \(\widehat{zOy}\) kề bù \(\left(gt\right)\)
Nên từ \(\left(3\right)\) \(\Rightarrow\widehat{mOn}=\frac{1}{2}.180^0\)
Hay \(\widehat{mOn}=90^0\)
chứng minh định lí Góc tạo bởi hai tia phân giác của hai góc kề bù là một góc vuông.
Với 2 góc kề bù, ta có định lí sau: 2 tia phần giác của 2 góc kề bù tạo thành 1 góc vuông.
a. Hãy vẽ 2 góc xOy và yOx' kề bù, tia phân giác Ot của góc xOy, tia phân giác Ot' của góc yOx; và gọi số đo của góc xOy là m0
b. Hãy viết giả thiết và kết luận của định lí.
c. Hãy điền vào chỗ trống (...) và sắp xếp 4 câu sau đây 1 cách hợp lí để chứng minh định lí trên.
1) Góc tOy = \(\frac{1}{2}\)mo vì .....
2) Góc t'Oy = \(\frac{1}{2}\)( 180o - mo ) vì ........
3) Góc tOt' = 90o vì .......
4) Góc x'Oy = 180o - mo vì ......
Giúp mình với :)
Với hai góc kề bù, ta có định lí sau :
Hai tia phân giác của hai góc kề bù tạo thành một góc vuông
a) Hãy vẽ hai góc xOy và yOx' kề bù, tia phân giác Ot của góc xOy, tia phân giác Ot' của góc yOx' và gọi số đo của góc xOy là \(m^0\)
b) Hãy viết giả thiết và kết luận của định lí
c) Hãy điền vào chỗ trống (.....) và sắp xếp bốn câu sau đây một cách hợp lí để chứng minh định lí trên
1) \(\widehat{tOy}=\dfrac{1}{2}m^0\) vì .............
2) \(\widehat{t'Oy}=\dfrac{1}{2}\left(180^0-m^0\right)\) vì ..........
3) \(\widehat{tOt'}=90^0\) vì .............
4) \(\widehat{x'Oy}=180^0-m^0\) vì ..........
Chứng tỏ rằng góc tạo bởi hai tia phân giác của hai góc kề bù bằng 90 độ
CÁC BẠN GIÚP MÌNH VỚI MAI MÌNH NỘP RỒI
Gọi hai góc kề bù lần lượt là a và b
Ta có: a+b=180độ
=>1/2a+1/2b = 1/2(a+b) = 90độ
vẽ hình ra là thấy!!!
Gọi xOy và yOz là 2 góc kề bù, Ot là p/g xOy; Ot' là p/g yOz
Ta có: yOt = 1/2 xOy (vì Ot là tia p/g xOy) (1)
yOt' = 1/2 yOz (vì Ot' là tia p/g yOz) (2)
xOy + yOz = 180 độ ( vì 2 góc kề bù)
Từ (1) và (2) suy ra yOt + yOt' = 1/2(xOy + yOz)
= 1/2.180
= 90 độ
suy ra tOt' = 90 độ
Vậy 2 tia p/g của 2 góc kề bù vuông góc với nhau
Nhớ nha !!!!
Với hai góc kề bù ta có định lý sau: Hai tia phân giác của hai góc kề bù tạo thành một góc vuông
Hãy viết giả thiết và kết luận của định lí
Chứng tỏ rằng góc tạo bởi 2 tia phân giác của 2 góc kề bù là góc vuông
Ta có
Hai góc \(\alpha\) và \(\beta\) là 2 góc kề bù => \(\alpha+\beta=180^o\)
=> \(\frac{1}{2}\alpha+\frac{1}{2}\beta=\frac{1}{2}\left(\alpha+\beta\right)\)
mà \(\alpha+\beta\) = 180o
nên \(\frac{1}{2}\alpha+\frac{1}{2}\beta=\frac{1}{2}.180^o=90^o\)
Vậy, góc tạo bởi 2 tia phân giác của 2 góc kề bù là góc vuông