Hình học lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hà Thảo Vy

Cho định lí: Góc tạo bởi hai tia phân giác của hai góc kề bù là một góc vuông

-Chứng minh định lí trên

Isolde Moria
7 tháng 10 2016 lúc 16:51

O x y z m m 1 2 3 4

Cho 2 góc xOy và yOz kề bù .

Om ; On lần lượt là tia phân giác của 2 góc đó 

\(\Rightarrow\begin{cases}\widehat{O_1}=\widehat{O_2}=\frac{1}{2}.\widehat{xOy}\\\widehat{O_3}=\widehat{O_4}=\frac{1}{2}.\widehat{yOz}\end{cases}\)

\(\Rightarrow\widehat{O_2}+\widehat{O_3}=\frac{1}{2}\left(\widehat{xOy}+\widehat{yOz}\right)=\frac{1}{2}.180^0=90^0\)

=> Đpcm

Nguyễn Thanh Vân
7 tháng 10 2016 lúc 17:04

* Vẽ hình: Vẽ hình hơi xấu chút! leuleu

x y O z t t'

* Viết giả thiết, kết luận:

GT: - Góc xOz và góc yOz là hai góc kề bù

       - Ot là tia phân giác của góc xOz

       - Ot' là tia phân giác của góc yOz

KL: Góc tot' là 1 góc vuông

* Chứng minh:

  Góc xOt = góc tOz = 1/2 . góc xOz (vì Ot là tia phân giác của góc xOz)

   Góc yot' = góc t'Oz = 1/2 . góc yOz (vì Ot' là tia phân giác của góc yOz)

        Góc xOz + góc yOz = 180 độ (vì 2 góc kề bù)

Vì góc xOz và góc yOz là 2 góc kề bù mà

    Ot là tia phân giác xOz

    Ot' là tia phân giác yOz

=> Tia Oz nằm giữa hai tia Ot và Ot' nên:

Góc tOt' = góc tOz + góc t'Oz = 1/2 . góc xOz + 1/2 . góc yOz = 1/2 . (góc xOz + góc yOz) = 1/2 . 180 độ = 90 độ

Vậy tOt' là 1 góc vuông.

   

Trần Nguyễn Bảo Quyên
7 tháng 10 2016 lúc 22:11

x m z n y O O

 

 

GT KL góc xOz và góc zOy kề bù Om là tia phân giác của góc xOz On là tia phân giác của góc zOy góc mOn = 90*

 

Chứng minh :

 

\(\widehat{mOz=\frac{1}{2}}\widehat{xOz}\)                                  \(\left(1\right)\)     (  vì Om là hai tia phân giác của  \(\widehat{xOz}\)  )

\(\widehat{zOn}=\frac{1}{2}\widehat{zOy}\)                                   \(\left(2\right)\)     (  vì On là hai tia phân giác của  \(\widehat{zOy}\)  )

Từ  \(\left(1\right)\)  và  \(\left(2\right)\)  , ta có :

\(\widehat{mOz}+\widehat{zOn}=\frac{1}{2}.\left(\widehat{xOz}+\widehat{zOy}\right)\)    \(\left(3\right)\)

Vì tia  \(Oz\)  nằm giữa hai tia  \(Om,On\)  và vì  \(\widehat{xOz}\)  và  \(\widehat{zOy}\)  kề bù \(\left(gt\right)\)

Nên  từ  \(\left(3\right)\)  \(\Rightarrow\widehat{mOn}=\frac{1}{2}.180^0\)

Hay  \(\widehat{mOn}=90^0\)

 


Các câu hỏi tương tự
Khánh Linh
Xem chi tiết
le thi yen chi
Xem chi tiết
lâm thị hà
Xem chi tiết
Nguyen Ngoc Lien
Xem chi tiết
Trang
Xem chi tiết
Nguyễn Hà Thảo Vy
Xem chi tiết
Nguyen Ngoc Lien
Xem chi tiết
송중기
Xem chi tiết
gtrutykyu
Xem chi tiết