CMR:Mọi x,y thuộc N
(2x + 3y) chia hết cho17 tương đương (9x + 5y) chia hết cho 7
chứng tỏ rằng 2x+3y chia hết cho 17 suy ra 9x+5y chia hết cho17
Ta có: 4.(2x+3y)+9x+5y⋮17
8x+12y+9x+5y⋮17
17x+17y⋮17
⇒4.(2x+3y)⋮17
⇒2x+3y⋮17
⇒9x+5y⋮17
\(2x+3y⋮17=>8x+12y⋮17\)
\(=>8x+12y+9x+5y=17\left(x+y\right)⋮17=>9x+5y⋮17\left(dpcm\right)\)
Ta có: 2x + 3y \(⋮\) 17
⇔ 4 ( 2x + 3y ) \(⋮\) 17
⇔ 8x + 12y \(⋮\) 17
Lại có: 8x + 12y + 9x + 5y ta có:
8x + 12y + 9x + 5y = 17x + 17y= 17 ( x+y ) chia hết cho 17
Mà 2x+3y \(⋮\) 17 ⇒ 9x+5y \(⋮\) 17
Vậy 9x + 5y chia hết cho 17
1 Chứng tỏ: (2x+3y)chia hết cho 17<=>(9x+5y)chia hết cho17
Ta phải chứng minh , 2. x + 3 . y chia hết cho 17, thì 9 . x + 5 . y chia hết cho 17
Ta có 4 (2x + 3y ) + ( 9x + 5y ) = 17x + 17y chia hết cho 17
Do vậy ; 2x + 3y chia hết cho 17 4 ( 2x +3y ) chia hết cho 17 9x + 5y chia hết cho 17 (0,5đ)
Ngược lại ; Ta có 4 ( 2x + 3y ) chia hết cho 17 mà ( 4 ; 17 ) = 1
2x + 3y chia hết cho 17
Câu trả lời hay nhất: 9x+5y = 17x - 8x + 17y - 12y = 17(x+y) - 4(2x+3y)
chia hết cho 17 khi và chỉ khi 2x+3y chia hết cho 17
=>Nếu 2x+3y chia hết cho 17 thì 9x+5y cũng chia hết cho 17 và điều ngược lại cũng đung
Chứng tỏ rằng : 2x+3y chia hết cho17 <=> 9x+5y chia hết cho 17
ta có 4(2x+3y)+(9x+5y)=17x+17y chia hết cho 17
do vậy 2x+3y chia hết cho 17 4(2x+3y) chia hết cho17 (9x+5y)chia hết cho 17
do 4(2x+3y) chia hết cho 17 ma (4,1)=1 nênnếu 2x+3y chia hết cho 17 thì 9x+5y cũng chia hết cho 17
C/M rằng nếu 2x+3y chia hết cho 17 thì 9x+5y chia hết cho 17 và ngược lại nếu 9x+5y chia hết cho 17 thì 2x+3y chia hết cho 12 [x,y thuộc N
+, Nếu 2x+3y chia hết cho 17
=> 13.(2x+3y) chia hết cho 17
=> 26x+39y chia hết cho 17
Mà 17x và 34y đều chia hết cho 17
=> 26x+39y-17x-34y chia hết cho 17
=> 9x+5y chia hết cho 17
+, Nếu 9x+5y chia hết cho 17
Mà 17x và 34y đều chia hết cho 17
=> 9x+5y+17x+34y chia hết cho 17
=> 26x+39y chia hết cho 17
=> 13.(2x+3y) chia hết cho 17
=> 2x+3y chia hết cho 17 ( vì 13 và 17 là 2 số nguyên tố cùng nhau )
=> ĐPCM
Tk mk nha
1/ Cho:x + 4y chia hết cho 7 (x,y thuộc N).
Chứng tỏ: 3x + 9y chia hết cho 7
2/ Cho 9x + 5y chia hết cho 17 (x,y thuộc N).
Chứng tỏ rằng : 2x + 3y chia hết cho 17
Bài 2 :
Ta có : 9x + 5y và 17x + 17y chia hết cho 17
=> ( 17x + 17y ) - ( 9x + 5y ) chia hết cho 17
=> 8x + 12y chia hết cho 17
=> 4.(2x+3y) chia hết cho 17
Mà (4;17) = 1 nên 2x + 3y chia hết cho 17
=> đpcm
Chứng minh rằng 2x +3y chia hết cho 17 thì (2x+3y)(9x+5y) chia hết cho 289. Với (x, y thuộc N)
Chứng minh rằng :
a/ Nếu 3x+5y chia hết cho 7 ( a;b thuộc N ) thì x +4y chia hết cho 7 ( x;y thuộc N )
Điều ngược lại có đúng không ?
b/ Nếu 2x+3y chia hết cho 17 ( a;b thuộc N ) thì 9x+5y chia hết cho 17( x;y thuộc N )
Điều ngược lại có đúng không ?
a: Cho 27x+3y chia hết cho 17 chứng minh 6x+8y chia hết cho 17
b: CMR:Nếu 3x+5y chia hết cho 7 thì x+4y chia hết cho 7
c:CMR: Nếu x-5y chia hết cho17 thì 10x+y chia hết cho 17
Chứng Minh Rằng:
2x+3y chia hết cho 17 khi và chỉ khi 9x+5y chia hết cho 17 (x;y thuộc N sao)