cho tam giac Abc vuong A
\(\dfrac{AB}{AC}=\dfrac{3}{4}\),duong cao AH=15cm.tinh HB,HC
cho tam giac ABC vuong tai A , duong cao AH ,HB = 3,6 cm ,HC = 6,4 cm . Tinh AB , AC ,AH
Ta có BC=HB+HC=3,6+6,4=10(cm)
Xét △ABC vuông tại A đường cao AH:
AB2=BC.HB=10.3,6=36⇒AB=6(cm)
AC2=BC.HC=10.6,4=64⇒AC=8(cm)
\(AC.AB=BC.AH\Rightarrow AH=\dfrac{AC.AB}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)
cho tam giac ABC vuong tai A duong cao AH. Biet AB=4cm, AC=7,5cm. Tinh HB, HC
cho tam giac ABC vuong tai A duong cao AH
AC=? HB=? HC=? KHI AB=8cm HC-HB=8cm
mn jup mk nha
cho tam giac ABC vuong tai,duong cao AH,biet HB=25cm,HC=36cm,AH=30cm.
a/ chung minh tam giac HBA dong dang voi tam giac HAC.
b/tinh do dai cac doan thang AB,BC,AC
a) Ta có: \(\widehat{HAB}+\widehat{HBA}=90^0\)
\(\widehat{HAB}+\widehat{HAC}=90^0\)
suy ra: \(\widehat{HBA}=\widehat{HAC}\)
Xét 2 tam giác vuông: \(\Delta HBA\) và \(\Delta HAC\) có:
\(\widehat{BHA}=\widehat{AHC}=90^0\)
\(\widehat{HBA}=\widehat{HAC}\) (CMT)
suy ra: \(\Delta HBA~\Delta HAC\)
b) \(BC=BH+HC=25+36=61\)cm
\(\Delta HBA~\Delta HAC\) \(\Rightarrow\)\(\frac{HB}{HA}=\frac{AB}{AC}\)
\(\Rightarrow\)\(\frac{AB}{AC}=\frac{5}{6}\)\(\Leftrightarrow\)\(\frac{AB}{5}=\frac{AC}{6}\)\(\Leftrightarrow\)\(\frac{AB^2}{25}=\frac{AC^2}{36}=\frac{AB^2+AC^2}{25+36}=\frac{BC^2}{61}=\frac{61^2}{61}=61\)
suy ra: \(\frac{AB^2}{25}=61\) \(\Leftrightarrow\) \(AB=\sqrt{1525}\) cm
\(\frac{AC^2}{36}=61\)\(\Leftrightarrow\) \(AC=\sqrt{2196}\)cm
p/s: tham khảo
cho tam giac ABC vuong tai,duong cao AH,biet HB=25cm,HC=36cm,AH=30cm.
a/ chung minh tam giac HBA dong dang voi tam giac HAC.
b/tinh do dai cac doan thang AB,BC,AC
a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA\(\sim\)ΔHAC
b: \(BC=HB+HC=61\left(cm\right)\)
\(AB=\sqrt{25\cdot61}=5\sqrt{61}\left(cm\right)\)
\(AC=\sqrt{36\cdot61}=6\sqrt{61}\left(cm\right)\)
cho tam giac abc vuong tai a, co duong cao ah ( h thuoc bc ), biet ah=6cm,hc-hb=9cm.Tinh hb,hc
Ta có: \(HC-HB=9\Rightarrow HC=9+HB\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AH^2=HB.HC=HB\left(HB+9\right)\Rightarrow HB^2+9HB=36\)
\(\Rightarrow HB^2+9HB-36=0\Rightarrow\left(HB-3\right)\left(HB+12\right)=0\)
mà \(HB>0\Rightarrow HB=3\left(cm\right)\Rightarrow HC=3+9=12\left(cm\right)\)
Ta có: HC-HB=9(gt)
nên HB=HC-9
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(HB\cdot HC=AH^2\)
\(\Leftrightarrow HC\left(HC-9\right)-36=0\)
\(\Leftrightarrow HC^2-9HC-36=0\)
\(\Leftrightarrow HC^2-12HC+3HC-36=0\)
\(\Leftrightarrow\left(HC+3\right)\left(HC-12\right)=0\)
\(\Leftrightarrow HC=12\left(cm\right)\)
\(\Leftrightarrow HB=HC-9=12-9=3\left(cm\right)\)
cho tam giac ABC vuong tai A duong cao AH tinh chu vi cua tam giac ABC biet AH=14cm HB/HC=1/4
1. cho tam giac ABC vuong tai A , duong cao AH . I,K lan luot la trung diem cua AB va AC. Tinh HB, HC,AH va dien tich tu giac AIHK biet HI 9cm, HK= 12cm
Cho tam giac ABC vuong tai A cho AH la duong cao, HB-HC=AB
Chung minh BC=2AB