(x^2+7x+12)(x^2-15x+56)=180
giải pt : (x2+7x+12)(x2-15x+56)=180
\(\left(x^2+7x+12\right)\left(x^2-15x+56\right)=180\)
\(\Leftrightarrow\)\(\left(x+3\right)\left(x+4\right)\left(x-7\right)\left(x-8\right)-180=0\)
\(\Leftrightarrow\)\(\left(x^2-4x-21\right)\left(x^2-4x-32\right)-180=0\)
Đặt \(x^2-4x-21=t\) ta có:
\(t\left(t-11\right)-180=0\)
\(\Leftrightarrow\)\(t^2-11t-180=0\)
\(\Leftrightarrow\)\(t^2-20t+9t-180=0\)
\(\Leftrightarrow\)\(\left(t-20\right)\left(t+9\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}t-20=0\\t+9=0\end{cases}}\)
P/S:đến đây bn thay trở lại rồi tìm x nhé! chúc bn hok tốt
a)(x^2+7x+12)(x^2-15x+56)=180
b) (x-90)(x-35)(x+18)(x+7)=-1080x^2
1)(x-90)(x-35)(x+18)(x+7)=-1080 x^2
2)(6x+1)(2x+6)(4x-3)(3x-2)=56x^2
3)(x^2+7x+12)(x^2-15x+56)=180
Phân tích thành nhân tử: \(\left(x^2-7x+12\right)\left(x^2-15x+56\right)-60\)
\(=\left(x^2-11x+26+4x-14\right)\left(x^2-11x+26-4x+14\right)+16\left(x^2-7x+12\right)-60\)
\(=\left(x^2-11x+26\right)^2-\left(4x-14\right)^2+\left(16x^2-2\cdot4\cdot14x+14^2\right)-64\)
\(=\left(x^2-11x+18\right)\left(x^2-11x+34\right)-\left(4x+14\right)^2+\left(4x+14\right)^2\)
\(=\left(x^2-2x-9x+18\right)\left(x^2-11x+34\right)\)
\(=\left(x-2\right)\left(x-9\right)\left(x^2-11x+34\right)\)
\(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+...+\frac{1}{x^2+15x+56}=\frac{1}{14}\)
Ta có : \(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+...+\) \(\frac{1}{x^2+15x+56}=\frac{1}{14}\)
<=>\(\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}\)+...+ \(\frac{1}{\left(x+7\right)\left(x+8\right)}=\frac{1}{14}\)
<=> \(\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+...+\frac{1}{x+7}-\frac{1}{x+8}\)= \(\frac{1}{14}\)
<=> \(\frac{1}{x+1}-\frac{1}{x+8}=\frac{1}{14}\)
<=> \(\frac{x+8-x-1}{\left(x+1\right)\left(x+8\right)}=\frac{1}{14}\)
<=>\(\frac{7.14}{14\left(x+1\right)\left(x+8\right)}=\frac{\left(x+1\right)\left(x+8\right)}{14\left(x+1\right)\left(x+8\right)}\)
<=> \(x^2+9x+8=98\)<=> \(x^2+9x-90=0\)
<=> (x-6)(x+15) =0
<=> \(\orbr{\begin{cases}x=6\\x=-15\end{cases}}\)
Vậy phương trình có 2 nghiệm x \(\in\left(6,15\right)\)
==============
- Do ko biết viết dấu ngoặc nhọn nên thay = dấu ngoặc tròn
- Đề ko rõ ràng , lần sau nhớ ghi yêu cầu ?
2x^2 + x - 6
7x^2 + 50x +7
12x^2 + 7x - 12
15x^2 + 7x - 2
a^2 - 5a - 14
4p^2 - 36p + 56
2x^2 + 5x +2
2x^2 + x - 6
= 2x^2 + 4x - 3x - 6
= 2x(x + 2) - 3(x + 2)
= (2x - 3)(x + 2)
7x^2 + 50x + 7
= 7x^2 + x + 49x + 7
= 7x(x + 7) + x + 7
= (7x + 1)(x + 7)
12x^2 + 7x - 12
15x^2 + 7x - 2
= 15x^2 - 3x + 10x - 2
= 3x(5x - 1) + 2(5x - 1)
= (3x + 2)(5x - 1)
a^2 - 5a - 14
= a^2 + 2a - 7a - 14
= a(a + 2) - 7(a + 2)
= (a - 7)(a + 2)
2x^2 + 5x + 2
= 2x^2 + x + 4x + 2
= 2x(x + 2) + x + 2
= (2x + 1)(x + 2)
\(2x^2+x-6=2x^2+4x-3x-6\)
\(=2x\left(x+2\right)-3\left(x+2\right)\)
\(=\left(x+2\right)\left(2x-3\right)\)
\(7x^2+50x+7\)
\(=7x^2+x+49x+7\)
\(=x\left(7x+1\right)+7\left(7x+1\right)\)
\(=\left(7x+1\right)\left(x+7\right)\)
\(12x^2+7x-12\)
\(=12x^2+16x-9x-12\)
\(=4x\left(3x+4\right)-3\left(3x+4\right)\)
\(=\left(3x+4\right)\left(4x-3\right)\)
\(4p^2-36p+56\)
\(=4p^2+8p+28p+56\)
\(=4p\left(p+2\right)+28\left(p+2\right)\)
\(=\left(p+2\right)\left(4p+28\right)\)
giải phương trình: \(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+...+\frac{1}{x^2+15x+56}=\frac{1}{14}\)
ĐKXĐ : Tự tìm nha : )
Ta có : \(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+...+\frac{1}{x^2+15x+56}=\frac{1}{14}\)
=> \(\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+...+\frac{1}{\left(x+7\right)\left(x+8\right)}=\frac{1}{14}\)
=> \(\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+...+\frac{1}{x+7}-\frac{1}{x+8}=\frac{1}{14}\)
=> \(\frac{1}{x+1}-\frac{1}{x+8}=\frac{1}{14}\)
=> \(\frac{x+8}{\left(x+1\right)\left(x+8\right)}-\frac{x+1}{\left(x+8\right)\left(x+1\right)}=\frac{1}{14}\)
=> \(14\left(x+8-x-1\right)=\left(x+1\right)\left(x+8\right)\)
=> \(x^2+x+8x+8=98\)
=> \(x^2+9x-90=0\)
=> \(\left(x+15\right)\left(x-6\right)=0\)
=> \(\left[{}\begin{matrix}x+15=0\\x-6=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-15\\x=6\end{matrix}\right.\) ( TM )
Vậy phương trình trên có nghiệm là \(S=\left\{6,-15\right\}\)
Giải PTsau :
\(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+...+\frac{1}{x^2++15x+56}=\frac{1}{14}\)
Lời giải:
PT \(\Leftrightarrow \frac{1}{(x+1)(x+2)}+\frac{1}{(x+2)(x+3)}+\frac{1}{(x+3)(x+4)}+....+\frac{1}{(x+7)(x+8)}=\frac{1}{14}\)
(ĐK: $x\neq -1;-2;...;-8$)
\(\Leftrightarrow \frac{(x+2)-(x+1)}{(x+1)(x+2)}+\frac{(x+3)-(x+2)}{(x+2)(x+3)}+....+\frac{(x+8)-(x+7)}{(x+7)(x+8)}=\frac{1}{14}\)
\(\Leftrightarrow \frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+....+\frac{1}{x+7}-\frac{1}{x+8}=\frac{1}{14}\)
\(\Leftrightarrow \frac{1}{x+1}-\frac{1}{x+8}=\frac{1}{14}\Leftrightarrow \frac{7}{x^2+9x+8}=\frac{1}{14}\)
\(\Rightarrow x^2+9x+8=98\Leftrightarrow x^2+9x-90=0\Rightarrow x=6\) hoặc $x=-15$ (đều thỏa mãn)
Vậy........