\(-\dfrac{2x-1}{9-x^2}\) Cách đổi vị trí số của mẫu ( đưa 9 sau x\(^2\) )
tìm điều kiện để các phân thức sau có nghĩa và tìm mẫu chung của chúng:
a,\(\dfrac{5}{2x-4};\dfrac{4}{3x-9};\dfrac{7}{50-25x}\)
b,\(\dfrac{3}{2x+6};\dfrac{x-2}{x^2+6x+9}\)
c,\(\dfrac{x^4+1}{x^2-1};x^2+1\)
Dùng quy tắc đổi dấu để tìm mẫu thức chung rồi thực hiện phép cộng :
a) \(\dfrac{4}{x+2}+\dfrac{2}{x-2}+\dfrac{5x-6}{4-x^2}\)
b) \(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x-4x^2}\)
c) \(\dfrac{1}{x^2+6x+9}+\dfrac{1}{6x-x^2-9}+\dfrac{x}{x^2-9}\)
d) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
e) \(\dfrac{x}{x-2y}+\dfrac{x}{x+2y}+\dfrac{4xy}{4y^2-x^2}\)
Mẫu chung của các phân thức \(\dfrac{1-4x}{2x^2+6x};\dfrac{4-x}{x^2-9};\dfrac{2x+1}{2}\)là
\(\frac{1-4x}{2x^2+6x}\)= \(\frac{1-4x}{2x\left(x+3\right)}\)
\(\frac{4-x}{x^2-9}\)= \(\frac{4-x}{\left(x-3\right)\left(x+3\right)}\)
=> MTC: 2x(x-3)(x+3)
tìm điều kiện để các phân thức sau có nghĩa và tìm mẫu chung của chúng:
a,\(\dfrac{5}{2x-4};\dfrac{4}{3x-9};\dfrac{7}{50-25x}\)
b,\(\dfrac{3}{2x+6};\dfrac{x-2}{x^2+6x+9}\)
c,\(\dfrac{x^4+1}{x^2-1};x^2+1\)
a: ĐKXĐ: \(x\notin\left\{2;3\right\}\)
MTC=150(x-2)(x-3)
b: ĐKXĐ: x<>-3
MTC=2(x+3)^2
c: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
MTC=x^2-1
Mẫu chung của các phân thức \(\dfrac{1-4x}{2x^2+6x};\dfrac{4-x}{x^2-9};\dfrac{2x+1}{2}\)là
\(2x^2+6x=2x\left(x+3\right)\)
\(x^2-9=\left(x-3\right)\left(x+3\right)\)
=> MTC:\(2x\left(x+3\right)\left(x-3\right)\)
1 Tìm x biết :
a \(\sqrt{3x^2}=\sqrt{12}\) ; b\(\sqrt{\left(x-2\right)}^2=3\) ; c\(\sqrt{4.\left(x^2+6x+9\right)=8}\) ; d\(\sqrt{3x^2-6x+3}=\sqrt{3}\) .
2 Hãy biến đổi mẫu thành bình phương của một số hoặc một biểu thức rồi khai phương mẫu(đưa ra ngoài dấu căn)
\(\sqrt{\dfrac{3}{5}};\sqrt{\dfrac{3}{8};}\sqrt{\dfrac{5b}{a}}\left(vớia.b\ge0\right)\)
Bài 1:
a: Ta có: \(\sqrt{3x^2}=\sqrt{12}\)
\(\Leftrightarrow3x^2=12\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
b: Ta có: \(\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
Biến đổi mỗi phân thức sau thành phân thức có mẫu thức là \(x^2-9\)
\(\dfrac{3x}{x+3};\dfrac{x-1}{x-3};x^2+9\)
\(\dfrac{3x}{x+3}=\dfrac{3x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{3x^2-9x}{x^2-9}\)
\(\dfrac{x-1}{x-3}=\dfrac{\left(x-1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+2x-3}{x^2-9}\)
\(x^2+9=\dfrac{\left(x^2+9\right)\left(x^2-9\right)}{x^2-9}=\dfrac{x^4-81}{x^2-9}\)
bài 2:hãy quy đồng mẫu phân số sau:-5/8:7/9:-11/12
c)tìm x thuộc z bt x/72 = -3/8
2x-1/54 =5/-6
tìm ucln (48:120)
b)đơn giản cách vt của các phân số sau 48/120;-60/108
c)tìm x thuộc z bt x/30 =-48/120;3-x/-15 = 9/45
bài 4:tìm số nguyên
a)-7/(5-x)=-(-2)
b)(1-2x)3=-125
c)(2x-3)2 =25
d)-17-2(x+1)2 =-21
Bài 4:
a: =>7/x-5=2
=>x-5=7/2
=>x=17/2
b: =>1-2x=-5
=>2x=6
=>x=3
c: =>2x-3=5 hoặc 2x-3=-5
=>2x=8 hoặc 2x=-2
=>x=-1 hoặc x=4
d: =>2(x+1)^2+17=21
=>2(x+1)^2=4
=>(x+1)^2=2
=>\(x+1=\pm\sqrt{2}\)
=>\(x=\pm\sqrt{2}-1\)
Quy đồng mẫu thức của các phân thức
1. \(\dfrac{x-y}{2x^2-4xy+2y^2};\dfrac{x+y}{2x^2+4xy+2y^2};\dfrac{1}{y^2-x^2}\)
2. \(\dfrac{1}{x^2+8x+15};\dfrac{1}{x^2+6x+9}\)
3. \(\dfrac{1}{\left(a-b\right)\left(b-c\right)};\dfrac{1}{\left(c-b\right)\left(c-a\right)};\dfrac{1}{\left(b-a\right)\left(a-c\right)}\)
1: \(MTC=2\left(x-y\right)\left(x+y\right)\)
\(\dfrac{x-y}{2x^2-4xy+2y^2}=\dfrac{x-y}{2\left(x-y\right)^2}=\dfrac{1}{2\left(x-y\right)}=\dfrac{1\cdot\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{2\left(x-y\right)\left(x+y\right)}\)
\(\dfrac{x+y}{2x^2+4xy+2y^2}\)
\(=\dfrac{x+y}{2\left(x^2+2xy+y^2\right)}\)
\(=\dfrac{x+y}{2\left(x+y\right)^2}=\dfrac{1}{2\left(x+y\right)}=\dfrac{x-y}{2\left(x+y\right)\left(x-y\right)}\)
\(\dfrac{1}{x^2-y^2}=\dfrac{2}{2\left(x^2-y^2\right)}=\dfrac{2}{2\left(x-y\right)\left(x+y\right)}\)
2: \(\dfrac{1}{x^2+8x+15}=\dfrac{1}{\left(x+3\right)\left(x+5\right)}=\dfrac{x+3}{\left(x+3\right)^2\cdot\left(x+5\right)}\)
\(\dfrac{1}{x^2+6x+9}=\dfrac{1}{\left(x+3\right)^2}=\dfrac{x+5}{\left(x+3\right)^2\cdot\left(x+5\right)}\)
3: \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}=\dfrac{1\cdot\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{a-c}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(\dfrac{1}{\left(c-b\right)\left(c-a\right)}=\dfrac{1}{\left(b-c\right)\left(a-c\right)}=\dfrac{a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(\dfrac{1}{\left(b-a\right)\left(a-c\right)}=\dfrac{-1}{\left(a-b\right)\left(a-c\right)}=\dfrac{-\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)