Cho x,y là số dương .Cho x+y=1.Chứng minh (1-1/x^2)(1-1/y^2)=1+2/xy. Nhanh lên giúp tớ nha!!!!!!
giúp tớ với: cho số thực dương x,y thoả mãn (x+y-1)^2 = xy.tìm gia trị nhỏ nhât P = (1/xy)+(1/x^2 y^2)+((căn bậc hai xy)/(x+y))
Các bạn giúp mình câu này nhé,mình cảm ơn nhiều ạ
Cho hai số dương x,y thoả mãn xy=1. Chứng minh: 1/x + 1/y + 2/(x+y) >=3
Lời giải:
$\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}=\frac{x+y}{xy}+\frac{2}{x+y}$
$=x+y+\frac{2}{x+y}$
$=\frac{x+y}{2}+\frac{x+y}{2}+\frac{2}{x+y}$
$\geq \frac{x+y}{2}+2\sqrt{\frac{x+y}{2}.\frac{2}{x+y}}$ (áp dụng BDT Cô-si)
$\geq \frac{2\sqrt{xy}}{2}+2=\frac{2}{2}+2=3$
Vậy ta có đpcm
Dấu "=" xảy ra khi $x=y=1$
Cho x, y là hai số thực dương. Chứng minh rằng:
\(\frac{1-xy}{2+x^2+y^2}+\frac{x^2-y}{1+2x^2+y^2}+\frac{y^2-x}{1+x^2+2y^2}\ge0\)
\(BĐT\Leftrightarrow\frac{2-2xy}{2+x^2+y^2}+\frac{2x^2-2y}{1+2x^2+y^2}+\frac{2y^2-2x}{1+x^2+2y^2}\ge0\)
\(\Leftrightarrow1-\frac{2-2xy}{2+x^2+y^2}+1-\frac{2x^2-2y}{1+2x^2+y^2}+1-\frac{2y^2-2x}{1+x^2+2y^2}\le3\)
\(\Leftrightarrow\frac{\left(x+y\right)^2}{2+x^2+y^2}+\frac{\left(y+1\right)^2}{1+2x^2+y^2}+\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le3\)(*)
Theo bất đẳng thức Bunyakovsky dạng phân thức: \(\frac{\left(x+y\right)^2}{2+x^2+y^2}\le\frac{x^2}{1+x^2}+\frac{y^2}{1+y^2}\)(1); \(\frac{\left(y+1\right)^2}{1+2x^2+y^2}\le\frac{y^2}{x^2+y^2}+\frac{1}{x^2+1}\)(2); \(\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le\frac{x^2}{x^2+y^2}+\frac{1}{y^2+1}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{\left(x+y\right)^2}{2+x^2+y^2}+\frac{\left(y+1\right)^2}{1+2x^2+y^2}+\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le\)\(\left(\frac{x^2}{x^2+y^2}+\frac{y^2}{x^2+y^2}\right)+\left(\frac{1}{y^2+1}+\frac{y^2}{y^2+1}\right)+\left(\frac{1}{x^2+1}+\frac{x^2}{x^2+1}\right)=3\)
Như vậy (*) đúng
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = 1
\(\frac{1-xy}{2+x^2+y^2}+\frac{x^2-y^2}{1+2x^2+y^2}+\frac{y^2-x}{1+x^2+2y^2}\ge0\)
\(\Leftrightarrow\frac{1-xy+3x^2-2y^2-2y^2+x}{\left(1+x^2+y^2\right)}\ge0\)
\(\Leftrightarrow\frac{2\left(1+x^2+y^2\right)+x^2}{1+x^2+y^2}\ge0\)
Vì x2 và y2 >0
\(\Rightarrow2+\frac{x^2}{1+x^2+y^2}\ge0\)(luôn đúng)
Bạn nhatt quynhh xem lại bài bạn đi nha. Phô diễn kỹ thuật tí:
Bài này đúng với mọi x, y là các số thực. Thật vậy\(,\)
Bất đẳng thức đã cho tương đương với: (vô thống kê hỏi đáp mình xem LaTex nha, tại olm bị lỗi LaTex)
cho x-y=1. Chứng minh rằng: giá trị mỗi đa thức sau là 1 hằng số
a) M=x^2-xy-x+xy^2-y^3-y^2+5
b) N=x^3-x^2y-x^2+xy^2-y^3-y^2+5x-5y-2018
Ai nhanh và đúng mk tick nha^^
CHỈ GỢI Ý THÔI
M = (x^2 - xy) + (xy^2 - y^3) - x - y^2 + 5
M = x(x - y) + y^2(x - y) - x - y^2 + 5
.....
PHẦN N KO BIẾT LÀM
Cho x,y,z là các số dương thõa xyz=1. Chứng minh (1/x+y+z)+1/3>2/xy+yz+xz
Các bạn ơi giải giúp tớ câu này được không , càng nhanh càng tốt nhé, tớ cảm ơn.
Cho x,y >0 thỏa mãn x+y=1. Tìm GTNN của A=1/(x^2+y^2) + 1/xy và B=1/(x^2+y^2) +2015/xy + 4xy
Cho x,y,z là 3 số thực dương thỏa mãn xyz=1. Chứng minh:
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}>=\frac{3}{2}\)
Cho các số dương x,y,z thỏa mãn xy+yz+zx=3. Tìm GTNN của:
A= \(\frac{yz}{x^3+2}+\frac{xz}{y^3+2}+\frac{xy}{z^3+2}\)
Mình là thành viên mới, rất mong được học hỏi. Xin hãy giúp đỡ mình ạ!!!
\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)
\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)
Câu 1: Cho x,y là các số thực dương thõa mãn xy=1. Chứng minh rằng: \(\left(x+y+1\right)\left(x^2+y^2\right)+\frac{4}{x+y}\ge8\)
Câu hỏi của Tuấn Anh Nguyễn - Toán lớp 9 - Học toán với OnlineMath
Các bạn ơi giải giúp tớ câu này được không , càng nhanh càng tốt nhé, tớ cảm ơn.
Cho x,y >0 thỏa mãn x+y=1. Tìm GTNN của A=1/(x^2+y^2) + 1/xy và B=1/(x^2+y^2) +2015/xy + 4xy
Dự đoán dấu "=" xảy ra khi x = y. Gộp một cách hợp lí các số hạng để áp dụng bất đẳng thức.
\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{2.\frac{\left(x+y\right)^2}{4}}=\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}=6\)
Dấu "=" xảy ra khi x = y = 1/2.
GTNN của A là 6.
\(B=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{8057}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{8057}{\left(x+y\right)^2}=\frac{4}{\left(x+y\right)^2}+2+\frac{8057}{\left(x+y\right)^2}=8063\)
Dấu "=" xảy ra khi x = y = 1/2.
Vậy GTNN của B là 8063.