\(\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=1+\frac{2}{xy}\)
<=> \(1-\frac{1}{x^2}-\frac{1}{y^2}+\frac{1}{x^2y^2}=1+\frac{2}{xy}\)
<=> \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}-\frac{1}{x^2y^2}=0\)
<=> \(\left(\frac{1}{x}+\frac{1}{y}\right)^2-\frac{1}{x^2y^2}=0\)
<=> \(\left(\frac{x+y}{xy}\right)^2-\frac{1}{x^2y^2}=0\)
<=> \(\frac{1}{x^2y^2}-\frac{1}{x^2y^2}=0\) luôn đúng
=> đpcm