\(4-\left|5x-2\right|-\left|3y+12\right|\)
Tìm GTLN của
\(B=4-\left|5x-2\right|-\left|3y+12\right|\)
tim GTLN,GTNN cua bieu thuc sau
D=\(\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
E=\(4-\left|5x-2\right|-\left|3y+12\right|\)
\(\)bài nào có MIN or MAX thì mk làm,mk ko làm thì có nghĩa là ko có nha
\(D=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
\(\left\{{}\begin{matrix}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|\ge0\)
\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|4x-3\right|=0\Rightarrow4x=3\Rightarrow x=\dfrac{3}{4}\\\left|5y+7,5\right|=0\Rightarrow5y=-7,5\Rightarrow y=-1,5\end{matrix}\right.\)
\(\Rightarrow MIN_D=17,5\) khi \(x=\dfrac{3}{4};y=-1,5\)
\(E=4-\left|5x-2\right|-\left|3y+12\right|\)
\(\left\{{}\begin{matrix}\left|5x-2\right|\ge0\\\left|3y+12\right|\ge0\end{matrix}\right.\)
\(\Rightarrow E=4-\left|5x-2\right|-\left|3y+12\right|\le4\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|5x-2\right|=0\Rightarrow5x=2\Rightarrow x=\dfrac{2}{5}\\\left|3y+12\right|=0\Rightarrow3y=-12\Rightarrow y=-4\end{matrix}\right.\)
\(\Rightarrow MAX_E=4\) khi \(x=\dfrac{2}{5};y=-4\)
Tìm giá trị lớn nhất của:
C=\(4-\left[5x-2\right]-\left[3y+12\right]\)
\(A=4-\left|5x-2\right|-\left|3y+12\right|\le4\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}5x-2=0\\3y+12=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)
Vậy \(max_A=4\) khi \(\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)
Giải phương trình:
1. \(\left\{{}\begin{matrix}5x-2y=-9\\4x+3y=2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}2x+y-4=0\\x+2y-5=0\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}2x+3y-7=0\\x+2y-4=0\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}5x+6y=17\\9x-y=7\end{matrix}\right.\)
1)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}15x-6y=-27\\8x+6y=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2y=5x+9\\23x=-23\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(-1;2\right)\)
2)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x+y=4\\2x+4y=10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3y=-6\\x=5-2y\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1;2\right)\)
3)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=14\\3x+6y=12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=4-x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)
4)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}5x+6y=17\\54x-6y=42\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}59x=59\\y=9x-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1;2\right)\)
a Rút gọn biểu thức \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)+...+\left(2^{256}+1\right)+1\)
b. Nếu \(x^2=y^2+z^2\). Cmr: \(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\)
a) Đề sai nha bạn :) mấy dấu cộng bạn phỉa chuyển thành dấu nhân nhé
\(A=\left(2+1\right)\left(2^2+1\right)...\left(2^{256}+1\right)+1\)
\(A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^{256}+1\right)+1\)
\(A=\left(2^2-1\right)\left(2^2+1\right)...\left(2^{256}+1\right)+1\)
\(A=\left(2^{256}-1\right)\left(2^{256}+1\right)+1\)
\(A=2^{512}-1+1\)
\(A=2^{512}\)
b . ( 5x - 3y + 4z )( 5x - 3y - 4z ) = ( 5x - 3y )^2 - ( 4z )^2 = 25x^2 - 30xy + 9y^2 - 16z^2 = 25( y^2 + z^2 ) - 30xy + 9y^2 - 16z^2 = 9z^2 + 34y^2 - 30xy ( 1 )
( 3x - 5y )^2 = 9x^2 - 30xy + 25y^2 = 9( y^2 + z^2 ) - 30xy + 25y^2 = 34y^2 + 9z^2 - 30xy ( 2 )
Tu ( 1 ) va ( 2 ) => dpcm
cho mình hỏi câu a bạn kia giải sao (2+1) tách ra (2-1)(2+1) được
Tìm giá trị lớn nhất của biểu thức sau:
\(F=4-\left|5x-2\right|-\left|3y+12\right|\)
Giải pt và hpt :
1. \(\left(x-3\right)\sqrt{10-x^2}=x^2-x-12\)
2. \(\begin{cases}x+3y=1\\x^2+y^2-3y=1\end{cases}\)
3. \(\begin{cases}y^2=\left(5x+4\right)\left(4-x\right)\\y^2-5x^2-4xy+16x-8y+16=0\end{cases}\)
Thực hiện phép tính
a, \(A=\left(3x^2y-11x^2-5y\right)\left(8xy-5x+6\right)\)
b,\(B=\left(-4x^2y-5x^2+3y^2\right)\left(2x^2-xy+3y^2\right)\)
c,\(C=5\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)-2\left(3x-1\right)\left(3x+1\right)\)
A= 3x2 y-11x2-5y.8xy-5+6
=(3-11-5.8-5+6).(x2.x2.x).(y.y.y)
=-47x5y3
Tìm giá trị lớn nhất của biểu thức sau:
\(D=4-\left|5x-2\right|-\left|3y+12\right|\)