Giải hpt
\(\begin{cases}5x^2y-4xy^2+3y^3-2\left(x+y\right)=0\\xy\left(x^2+y^2\right)+2=\left(x+y\right)^2\end{cases}\)
Giải hpt
1. \(\begin{cases}3\left(x\sqrt{x}-y\sqrt{y}\right)=6\left(4\sqrt{2}+\sqrt{y}\right)\\x-3y=6\end{cases}\)
2.\(\begin{cases}x^2+y^2-xy=1\\\sqrt{\left(x+y\right)^2}=x^2+y^2\end{cases}\)
\(\begin{cases}2\sqrt{x^2+3x+2}-\sqrt{x+1}=2y\sqrt{y^2+1}+9-y-6y^2\\\sqrt{x^2+3x+2}+3\sqrt{x+1}=y\sqrt{y^2+1}-6+3y+4y^2\end{cases}\)
\(\begin{cases}x^2-y-1=2\sqrt{2x-1}\\y^3-8x^3+3y^2+4y-2x+2=0\end{cases}\)
\(\begin{cases}\left(x+\sqrt{x^2+4}\right)\left(y+\sqrt{y^2+1}\right)=2\\27x^6=x^3+4x+2\end{cases}\)
\(\begin{cases}x-\sqrt{3y-2}=\sqrt{9y^2-6y}-x\sqrt{x^2+2}\\x+y+\sqrt{y+3}=4\end{cases}\)
giải hpt:1)\(\begin{cases}\text{x+y+xy(2x+y)=5xy }\\\text{x+y+xy(3x-y)=4xy}\end{cases}\)
2)\(\begin{cases}\left(2x+y+1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{cases}\)
3)\(\begin{cases}\sqrt{9x+\frac{y}{x}}+2.\sqrt{y+\frac{2x}{y}}=4\\\left(\frac{2x}{y^2}-1\right)\left(\frac{y}{x^2}-9\right)=18\end{cases}\)
1)\(\begin{cases}y^3\left(3x^2-4x-23\right)=8-8y\\y^2\left(x^3+10x+27\right)=8x+6y\end{cases}\)
2\(\begin{cases}2\sqrt{x^2+5x-y+2}-2=\sqrt{y^2+8x}+x\\2y-\sqrt{x+1}=x+5\end{cases}\)
1)\(\begin{cases}x+\sqrt{x^2+1}=y+\sqrt{y^2-1}\left(1\right)\\3\sqrt{y-1}+\sqrt{x}=2\sqrt{y+1}\left(2\right)\end{cases}\) nhân liên hợp pt 1 đc (\(\left(x^2-y^2+1\right)\left(\frac{1}{x+\sqrt{y^2-1}}+\frac{1}{\sqrt{x^2+1}+y}\right)\) thì TH1 \(x^2-y^2+1\) lm ntn
2\(\begin{cases}\sqrt{x^2+xy+2y^2}+\sqrt{xy}=3y\\\sqrt{y-1}+\sqrt{x-1}+x+y=6\end{cases}\)
3\(\begin{cases}\frac{\sqrt{x^2+5}}{x}+\frac{\sqrt{y^2+3}}{y}=\frac{7}{2}\\x\sqrt{x^2+5}+y\sqrt{y^2+3}=3+x^2+y^2\end{cases}\)
1)\(\begin{cases}\left(8x-6\right)\sqrt{y}=\left(2+\sqrt{x-2}\right)\left(y+4\sqrt{x-2}+4\right)\\2\sqrt{x^2+3x-y}-\sqrt{y^2+4x}=x+1\end{cases}\)
2)\(\begin{cases}\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\\x^2+\sqrt{3-x}=2y^2-4\sqrt{2-y}+5\end{cases}\)
Giải hệ phương trình sau :
\(\begin{cases}xy\left(x+1\right)=x^3+y^2+x-y\\3y\left(2+\sqrt{9x^2+3}\right)+\left(4y+2\right)\left(\sqrt{1+x+x^2}+1\right)=0\end{cases}\) \(\left(x,y\in Z\right)\)
Giải hpt:
\(\begin{cases}x^3-\left(y^2+y\right)^3=y^3\left(\sqrt{y+1}-\sqrt{\frac{x}{y}}\right)\\2x^3-12y^3=xy^2\left(1+y\right)\end{cases}\)