giải hpt:1)\(\begin{cases}\text{x+y+xy(2x+y)=5xy }\\\text{x+y+xy(3x-y)=4xy}\end{cases}\)
2)\(\begin{cases}\left(2x+y+1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{cases}\)
3)\(\begin{cases}\sqrt{9x+\frac{y}{x}}+2.\sqrt{y+\frac{2x}{y}}=4\\\left(\frac{2x}{y^2}-1\right)\left(\frac{y}{x^2}-9\right)=18\end{cases}\)
\(\begin{cases}2\sqrt{x^2+3x+2}-\sqrt{x+1}=2y\sqrt{y^2+1}+9-y-6y^2\\\sqrt{x^2+3x+2}+3\sqrt{x+1}=y\sqrt{y^2+1}-6+3y+4y^2\end{cases}\)
\(\begin{cases}x^2-y-1=2\sqrt{2x-1}\\y^3-8x^3+3y^2+4y-2x+2=0\end{cases}\)
\(\begin{cases}\left(x+\sqrt{x^2+4}\right)\left(y+\sqrt{y^2+1}\right)=2\\27x^6=x^3+4x+2\end{cases}\)
\(\begin{cases}x-\sqrt{3y-2}=\sqrt{9y^2-6y}-x\sqrt{x^2+2}\\x+y+\sqrt{y+3}=4\end{cases}\)
1)\(\begin{cases}\left(8x-6\right)\sqrt{y}=\left(2+\sqrt{x-2}\right)\left(y+4\sqrt{x-2}+4\right)\\2\sqrt{x^2+3x-y}-\sqrt{y^2+4x}=x+1\end{cases}\)
2)\(\begin{cases}\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\\x^2+\sqrt{3-x}=2y^2-4\sqrt{2-y}+5\end{cases}\)
1)\(\begin{cases}x+\sqrt{x^2+1}=y+\sqrt{y^2-1}\left(1\right)\\3\sqrt{y-1}+\sqrt{x}=2\sqrt{y+1}\left(2\right)\end{cases}\) nhân liên hợp pt 1 đc (\(\left(x^2-y^2+1\right)\left(\frac{1}{x+\sqrt{y^2-1}}+\frac{1}{\sqrt{x^2+1}+y}\right)\) thì TH1 \(x^2-y^2+1\) lm ntn
2\(\begin{cases}\sqrt{x^2+xy+2y^2}+\sqrt{xy}=3y\\\sqrt{y-1}+\sqrt{x-1}+x+y=6\end{cases}\)
3\(\begin{cases}\frac{\sqrt{x^2+5}}{x}+\frac{\sqrt{y^2+3}}{y}=\frac{7}{2}\\x\sqrt{x^2+5}+y\sqrt{y^2+3}=3+x^2+y^2\end{cases}\)
Giải hpt:
\(\begin{cases}x^3-\left(y^2+y\right)^3=y^3\left(\sqrt{y+1}-\sqrt{\frac{x}{y}}\right)\\2x^3-12y^3=xy^2\left(1+y\right)\end{cases}\)
Giải pt và hpt :
1. \(\left(x-3\right)\sqrt{10-x^2}=x^2-x-12\)
2. \(\begin{cases}x+3y=1\\x^2+y^2-3y=1\end{cases}\)
3. \(\begin{cases}y^2=\left(5x+4\right)\left(4-x\right)\\y^2-5x^2-4xy+16x-8y+16=0\end{cases}\)
Giải hpt:
\(\begin{cases}x^3-\left(y^2+y\right)^3=y^3\left(\sqrt{y+1}-\sqrt{\frac{x}{y}}\right)\\2x^3-12y^3=xy^2\left(1+y\right)\end{cases}\)
Giải giúp mk với,cảm ơn nhiều
Giải hệ phương trình sau :
\(\begin{cases}xy\left(x+1\right)=x^3+y^2+x-y\\3y\left(2+\sqrt{9x^2+3}\right)+\left(4y+2\right)\left(\sqrt{1+x+x^2}+1\right)=0\end{cases}\) \(\left(x,y\in Z\right)\)
\(\begin{cases}x\left(\sqrt{y+6}-x\right)+\sqrt{6\left(x^2-y\right)}=6\\\sqrt{y^2-2x^2+17}+2\sqrt{4y+5}=y^3-2y^2+5x^2-26\end{cases}\)