cho abcd=1. Tính P5=∑a/(abc+ab+a+a)
Bài 1: Cho hình thang cân ABCD ( AB// CD ) có góc A= 2 góc C. Tính số đo các góc hình thang
Bài 2: Cho hình thang cân ABCD ( AB// CD ) có góc A= 3 góc D. Tính số đo các góc của hình thang
Bài 3: Cho hình tam giác ABC cân tại A. Qua điểm M trên cạnh AB kẻ đường thằng song song với BC cắt cạnh ACtại N
1, Tứ giác BMNC là hình gì? Vì sao?
2, So sánh diện tích MNB và diện tích MNC
3, CM diện tích ABN= diện tích ACM
Bafi1: Do AB // CD ( GT )
⇒ˆA+ˆC=180o
⇒2ˆC+ˆC=180o
⇒3ˆC=180o
⇒ˆC=60o
⇒ˆA=60o.2=120o
Do ABCD là hình thang cân
⇒ˆC=ˆD
Mà ˆC=60o
⇒ˆD=60o
AB // CD ⇒ˆD+ˆB=180o
⇒ˆB=180o−60o=120o
Vậy ˆA=ˆB=120o;ˆC=ˆD=60o
Bài 2:
Ta có; AB//CD
\(\Rightarrow\)góc BAD+ góc ADC= \(180^o\)
^A=3. ^D \(\Rightarrow\)\(\dfrac{A}{3}\)=^D
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{A}{3}=\dfrac{D}{1}=\dfrac{A+D}{3+1}=\dfrac{180^O}{4}=45^O\)
\(\Rightarrow\)^A= \(135^O\)
\(\Rightarrow\)^D=\(45^o\)
\(\Rightarrow B=A=135^o\)
\(\Rightarrow C=D=45^o\)
BÀI 1 cho tam giác ABC vuông tại A, biết AB=a và góc B=60 độ. tính độ dài của các vecto AB+AC và AB-AC
BÀI 2 cho hình vuông ABCD cạnh a . tính độ dài của các vecto
a) AC-AB
b) AB+AD
c) AB+BC
cho 4 số a,b,c,d thỏa mãn: abcd=4. tính giá trị biểu thức:
M=a/abc+ab+a+1 + b/ bcd+bc+b+1 +c/cda+cd+c+1 +d/dab+da+d+abc+1
1. Cho tam giác ABC vuông tại A, AB = 5, AC = 7. Tính giá trị của \(\overrightarrow{AB}\).\(\overrightarrow{BC}\)?
2. Cho hình chữ nhật ABCD, AB = 8, AD = 5. Tính giá trị của \(\overrightarrow{AB}\).\(\overrightarrow{BD}\)?
1.
\(\overrightarrow{AB}.\overrightarrow{BC}=\overrightarrow{AB}.\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\overrightarrow{AB}.\left(-\overrightarrow{AB}\right)+\overrightarrow{AB}.\overrightarrow{AC}=-AB^2=-25\)
2.
\(\overrightarrow{AB}.\overrightarrow{BD}=\overrightarrow{AB}\left(\overrightarrow{BA}+\overrightarrow{AD}\right)=-\overrightarrow{AB}.\overrightarrow{AB}+\overrightarrow{AB}.\overrightarrow{AD}=-AB^2+0=-64\)
1. Cho ∆ABC vuông tại A có AB=3 ,AC=4 kẻ đường cao AH . tính độ dài cạnh BC ,AH, HB ,HC 2. CHO ∆ABC vuông tại A đường cao AH . Biết AH=2,BH=1 . Tính độ dài các của ∆ABC 3. Cho hình chữ nhật ABCD , từ A kẻ đường thẳng vuông góc với BD và CD lần lượt tại H và E cho AB =4cm , AD=3cm a, Tính độ dài đường chéo BD của hình chữ nhật ABCD b; Tính AH
1.
\(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\left(pytago\right)\)
Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=1,8\left(cm\right)\\CH=\dfrac{AC^2}{BC}=3,2\left(cm\right)\\AH=\sqrt{3,2\cdot1,8}=5,76\left(cm\right)\end{matrix}\right.\)
2.
Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=BH\cdot HC=HC\\AB^2=BH\cdot BC=BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}HC=4\left(cm\right)\\AB=\sqrt{HC+HB}=\sqrt{4+1}=\sqrt{5}\left(cm\right)\end{matrix}\right.\)
\(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-5}=2\sqrt{5}\left(cm\right)\)
Vậy \(AB=\sqrt{5}\left(cm\right);BC=5\left(cm\right);AC=2\sqrt{5}\left(cm\right)\)
Bài 1. Cho hình thang cân ABCD (AB\\CD), A=3D. Tính các góc của hình thang cân.
Bài 2.Cho hình thang cân ABCD (AB\\CD) có O là giao điểm hai đường chéo. Chứng minh OA = OB, OC = OD.
Bài 3.Cho tam giác ABC cân tại A. Trên cạnh AB, AC lấy điểm M, N sao cho BM = CN.
a) Chứng minh BMNC là hình thang cân.
b) Tính các góc tứ giác BMNC biết góc A=400
Bài 4. Cho hình thang cân ABCD (AB\\CD) có AB=8cm, BC=AD=5cm, CD=14cm. Kẻ các đường cao AK và BH.
a) Chứng minh rằng CH=DK.
b) Chứng minh: CD-AB=2AK. Từ đó tính độ dài BH.
c) Tính diện tích hình thang ABCD.
Bài 5. Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên BC. Chứng minh CA là tia phân giác của góc BCD.
Bài 5:
Xét ΔBAC có BA=BC
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)
mà \(\widehat{BAC}=\widehat{ACD}\)
nên \(\widehat{ACB}=\widehat{ACD}\)
hay CA là tia phân giác của \(\widehat{BCD}\)
1, cho hình thang vuông ABCD có A = D = 90 độ , AB = AD =2 cm , CD= 4cm . tính B , C của hình thang.
2, cho hình thangg vuông ABCD có A = D =90 độ , CD = BC =2AB . Tính góc ABC.
\(2,\)
Kẻ BH vuông góc với CD tại H
Xét hai tam giác BDH và BCH:
+) BH là cạnh chung
+) Góc BHD = góc BHC = 90 độ
+) DH = CH
=> Tam giác BDH = tam giác HCH (c.g.c)
=> BD = BC
Khác: DC = BC
=> BC = CD = DB => Tam giác BCD đều => Góc C = 60 độ
Mà: AB // CD => Góc B + góc C = 180 độ => Góc B = góc ABC = 180 độ - 60 độ = 120 độ
Cho 3 điểm A(-3;2);B(0;4);C(1;-1)
a,3 điểm A,B,C có thẳng hàng không
b,Tính chu vi Tam giác ABC
c,Tìm tọa độ trung điểm AB,BC,CA
đ,Tìm tọa độ trọng tâm Tam giác ABC
e,Tìm tọa độ Đ sao cho ABCD là hình bình hành
f,Tìm tọa độ E sao cho ABCD là hình bình hành
a) Ta thấy \(\overrightarrow{AB}\left(3;2\right)\) và \(\overrightarrow{AC}\left(4;-3\right)\). Vì \(\dfrac{3}{4}\ne\dfrac{2}{-3}\) nên A, B, C không thẳng hàng.
b) Ta có \(\overrightarrow{BC}\left(1;-5\right)\)
Do vậy \(AB=\left|\overrightarrow{AB}\right|=\sqrt{3^2+2^2}=\sqrt{13}\)
\(AC=\left|\overrightarrow{AC}\right|=\sqrt{4^2+\left(-3\right)^2}=5\)
\(BC=\left|\overrightarrow{BC}\right|=\sqrt{1^2+\left(-5\right)^2}=\sqrt{26}\)
\(\Rightarrow C_{ABC}=AB+AC+BC=5+\sqrt{13}+\sqrt{26}\)
c) Gọi M, N, P lần lượt là trung điểm BC, CA, AB.
\(\Rightarrow P=\left(\dfrac{x_A+x_B}{2};\dfrac{y_A+y_B}{2}\right)=\left(-\dfrac{3}{2};3\right)\)
\(N=\left(\dfrac{x_A+x_C}{2};\dfrac{y_A+y_C}{2}\right)=\left(-1;\dfrac{1}{2}\right)\)
\(M=\left(\dfrac{x_B+x_C}{2};\dfrac{y_B+y_C}{2}\right)=\left(\dfrac{1}{2};\dfrac{3}{2}\right)\)
d) Gọi G là trọng tâm tam giác ABC thì \(G=\left(\dfrac{x_A+x_B+x_C}{3};\dfrac{y_A+y_B+y_C}{3}\right)=\left(-\dfrac{2}{3};\dfrac{5}{3}\right)\)
e) Gọi \(D\left(x_D;y_D\right)\) là điểm thỏa mãn ycbt.
Để ABCD là hình bình hành thì \(\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Leftrightarrow\left(3;2\right)=\left(1-x_D;-1-y_D\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}3=1-x_D\\2=-1-y_D\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_D=-2\\y_D=-3\end{matrix}\right.\)
\(\Rightarrow D\left(-2;-3\right)\)
f) Bạn xem lại đề nhé.
Cho ∆ abc có A (2;1), B(-2;5), c(-5;2) a) tính tọa độ vectơ AB-> ; AC-> ; BC-> b) tính chu vi ∆ ABC CMR ∆ABC vuông tại B c) tìm tọa độ trung điểm I của AB d)_________trọng tâm ∆ ABC e)_________ D sao cho ABCD là hình bình hành
a: A(2;1); B(-2;5); C(-5;2)
Tọa độ vecto AB là:
\(\left\{{}\begin{matrix}x=-2-2=-4\\y=5-1=4\end{matrix}\right.\)
Vậy: \(\overrightarrow{AB}=\left(-4;4\right)\)
Tọa độ vecto AC là:
\(\left\{{}\begin{matrix}x=-5-2=-7\\y=2-1=1\end{matrix}\right.\)
Vậy: \(\overrightarrow{AC}=\left(-7;1\right)\)
Tọa độ vecto BC là:
\(\left\{{}\begin{matrix}x=-5-\left(-2\right)=-5+2=-3\\y=2-5=-3\end{matrix}\right.\)
Vậy: \(\overrightarrow{BC}=\left(-3;-3\right)\)
b: \(\overrightarrow{AB}=\left(-4;4\right);\overrightarrow{AC}=\left(-7;1\right);\overrightarrow{BC}=\left(-3;-3\right)\)
\(AB=\sqrt{\left(-4\right)^2+4^2}=4\sqrt{2}\)
\(AC=\sqrt{\left(-7\right)^2+1^2}=5\sqrt{2}\)
\(BC=\sqrt{\left(-3\right)^2+\left(-3\right)^2}=3\sqrt{2}\)
Chu vi ΔABC là:
\(5\sqrt{2}+4\sqrt{2}+3\sqrt{2}=12\sqrt{2}\)
Vì \(AC^2=BA^2+BC^2\)
nên ΔABC vuông tại B
c: tọa độ I là:
\(\left\{{}\begin{matrix}x=\dfrac{2+\left(-2\right)}{2}=0\\y=\dfrac{1+5}{2}=\dfrac{6}{2}=3\end{matrix}\right.\)
Vậy: I(0;3)
d: Tọa độ trọng tâm G của ΔABC là:
\(\left\{{}\begin{matrix}x=\dfrac{2+\left(-2\right)+\left(-5\right)}{3}=-\dfrac{5}{3}\\y=\dfrac{1+5+2}{3}=\dfrac{8}{3}\end{matrix}\right.\)
e: ABCD là hình bình hành
=>\(\overrightarrow{AB}=\overrightarrow{DC}\)
mà \(\overrightarrow{AB}=\left(-4;4\right);\overrightarrow{DC}=\left(-5-x;2-y\right)\)
nên \(\left\{{}\begin{matrix}-5-x=-4\\2-y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+5=4\\y=2-4=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)
Vậy: D(-1;-2)