Cho a,b,c khác 0 và 1/a+1/b+1/c=1/(a+b+c)
Tính A=(a^2021+b^2021+c^2021)(1/a^2021+1/b^2021+1/c^2021)
cho a,b,c khác 0; a+b+c khác 0 thỏa mãn: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
CMR: \(\frac{1}{a^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{a^{2021}+b^{2021}+c^{2021}}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Rightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow ab^2+a^2b+ac^2+a^2c+bc^2+b^2c+2abc=0\)
\(\Leftrightarrow ab^2+a^2b+ac^2+bc^2+a^2c+abc+b^2c+abc=0\)
\(\Leftrightarrow\left(a+b\right)ab+c^2\left(a+b\right)+bc\left(a+b\right)+ac\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(c^2+ab+bc+ac\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Vậy ta có các trường hợp: \(a=-b,c=0\)hoặc \(b=-c,a=0\)hoăc \(a=-c,b=0\).
Với từng trường hợp ta đều có đpcm.
Cho a, b, c ≠ 0 thoả mãn \(\left\{{}\begin{matrix}a+b+c=2021\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2021}\end{matrix}\right.\) . Chứng minh: \(\frac{1}{a^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{a^{2021}+b^{2021}+c^{2021}}\)
Cho a,b,c khác 0 thỏa mãn 1/a+1/b+1/c=1/a+b+c
a) CMR 1/a^3+1/b^3+1/c^3=1/a^3+b^3+c^3
b)Với a+b+c=1 Tính P = a^2021+b^2021+c^2021
Bài làm:
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0
=> Hoặc a=-b hoặc b=-c hoặc c=-a
Ko mất tổng quát, g/s a=-b
a) Ta có: vì a=-b thay vào ta được:
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)
\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)
=> đpcm
b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)
=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)
Cho a,b,c ,(a+b+c) là các số thực khác 0 thỏa mãn điều kiện: \(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\\a^3+b^3+c^3=2^9\end{matrix}\right.\)
Tính \(A=a^{2021}+b^{2021}+c^{2021}\)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0
=> Hoặc a=-b hoặc b=-c hoặc c=-a
Ko mất tổng quát, g/s a=-b
a) Ta có: vì a=-b thay vào ta được:
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)
\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)
=> đpcm
b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)
=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)
Cho a,b,c khác 0 thỏa mãn 1/a+1/b+1/c=1/a+b+c
a) CMR 1/a^3+1/b^3+1/c^3=1/a^3+b^3+c^3
b)Với a+b+c=1 Tính P = a^2021+b^2021+c^2021
Cho a,b,c khác 0 thỏa mãn 1/a+1/b+1/c=1/a+b+c
a) CMR 1/a^3+1/b^3+1/c^3=1/a^3+b^3+c^3
b)Với a+b+c=1 Tính P = a^2021+b^2021+c^2021
Nhanh 3 tick nhé ~~~
Cho a,b,c khác 0 thỏa mãn 1/a+1/b+1/c=1/a+b+c
a) CMR 1/a^3+1/b^3+1/c^3=1/a^3+b^3+c^3
b)Với a+b+c=1 Tính P = a^2021+b^2021+c^2021
Nhanh 3 tick nhé ~~~
Cho a,b,c khác 0 thỏa mãn 1/a+1/b+1/c=1/a+b+c
a) CMR 1/a^3+1/b^3+1/c^3=1/a^3+b^3+c^3
b)Với a+b+c=1 Tính P = a^2021+b^2021+c^2021
Nhanh 3 tick nhé ~~~
Cho a,b,c khác 0 thỏa mãn 1/a+1/b+1/c=1/a+b+c
a) CMR 1/a^3+1/b^3+1/c^3=1/a^3+b^3+c^3
b)Với a+b+c=1 Tính P = a^2021+b^2021+c^2021
Nhanh 3 tick nhé ~~~