Cho a là số lẻ, b\(\in\)N. CMR: a và ab + 4 là số nguyên tố cùng nhau.
OLM giúp em giải bài này với
Cho a là số lẻ, b\(\in\)N. CMR: a và ab + 4 là số nguyên tố cùng nhau.
Cho a là số lẻ, b$$N. CMR: a và ab + 4 là số nguyên tố cùng nhau.
Gọi k là ước số của a và ab+4
Do a lẻ => k lẻ
Ta biểu diễn:
{ab+4=kp (1)
{a=kq (2)
Thay (2) vào (1)
=> kqb+4 =kp
=> k(p-qb)=4
=> p-qb =4/k
do p-qb nguyên => k là ước lẻ của 4 => k=1
Vậy a và ab+4 nguyên tố cùng nhau
Mấy bài này khó quá,bạn nào giải được mình xin cảm ơn nha :
Bài 1 : Cho a là số tự nhiên lẻ, b là một số tự nhiên. Chứng minh rằng các số:
a) a và ab+4 là 2 số nguyên tố cùng nhau
b)Tìm n để n+2 và 3n+11 là 2 số nguyên tố cùng nhau (n là số tự nhiên)
Bài 2: Chứng minh rằng : S=1+3+5+.........+ (2n-1) (n thuộc N*) là số chính phương .
1. Nhận xét rằng a là số tự nhiên lẻ và ab + 4 là một số chẵn.
Nếu d là một ước chung của a và ab + 4 ( d > 1), thì do a lẻ nên d phải là số lẻ.
Do ab chia hết cho d nên 4 chia hết cho d, suy ra d \(\in\) { 2; 4 }. (mâu thuẫn)..
b) Gọi d là ước chung lớn nhất của n + 2 và 3n + 11.
Suy ra \(\hept{\begin{cases}n+2⋮d\\3n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+6⋮d\\3n+11⋮d\end{cases}}}\).
Suy ra \(3n+11-\left(3n+6\right)=5⋮d\).
Vì vậy d = 1 hoặc d = 5.
Để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau thì d = 1.
Nếu giả sử ngược lại \(\hept{\begin{cases}n+2⋮5\\3n+11⋮5\end{cases}}\) \(\Leftrightarrow n+2⋮5\).
Suy ra \(n\) chia 5 dư 3 hay n = 5k + 3.
Vậy để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau, thì n chia cho 5 dư 0, 1, 2, 4 hay n = 5k, n = 5k +1, n = 5k + 2, n = 5k + 4.
Số các số hạng của S là: \(\frac{\left(2n-1-1\right)}{2}+1=n-1+1=n\).
S = 1 + 3 + 5 + ........ (2n - 1)
\(=\frac{\left(2n-1+1\right).n}{2}=n.n=n^2\).
Suy ra S là một số chính phương.
Cho a là STN lẻ, b là một số tự nhiên. CMR các số a và ab + 4 nguyên tố cùng nhau
1/ Số 11...11(n chữ số 1 )211..11(n chữ số 1 ) là hợp số hay số nguyên tố ( với n > 0 )
2/Cho a lẻ ; b chẵn. CMR a và a x b + 4 là hai số nguyên tố cùng nhau
Cho a là STN lẻ và b là 1 STN. CMR số a và số \(\overline{ab}\) + 4 nguyên tố cùng nhau
Gọi x \(\in\) (a; \(\overline{ab}+4\))
\(\Rightarrow\) a \(⋮\)x; (\(\overline{ab}\) + 4) \(⋮\) x
\(\Rightarrow\) \(\overline{ab}\) \(⋮\) x
\(\Rightarrow\) 4 \(⋮\) x
\(\Rightarrow\) x \(\in\left\{1;2;4\right\}\)
Do a lẻ
\(\Rightarrow\) a \(⋮̸\) 2; a \(⋮̸\) 4
\(\Rightarrow x=1\)
Vậy a và \(\overline{ab}+4\) là hai số nguyên tố cùng nhau
Gọi \(d=ƯCLN\left(a,ab+4\right)\left(d\ne0\right)\)
\(\Rightarrow\begin{cases}a⋮d\\ab+4⋮d\end{cases}\) \(\Rightarrow\begin{cases}a.b⋮d\\a.b+4⋮d\end{cases}\)
\(\Rightarrow\left(a.b+4\right)-\left(a.b\right)⋮d\Rightarrow4⋮d\)
\(\Rightarrow d\in\left\{1;2;4\right\}\)
Mà : a là STN lẻ \(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(a,ab+4\right)=1\)
Vậy a và ab + 4 là hai số nguyên tố cùng nhau .
cho a là số tự nhiên lẻ ,b là số tự nhiên cmr các số a và ab + 4 nguyên tố cùng nhau
Cho a , b thuộc N với a là số lẻ
Chứng minh rằng các số a và ab + 4 nguyên tố cùng nhau
Goi d la UCLN(a;ab+4)
Ta co:
+ a chia het cho d(1)
+ ab+4 chia het cho d(2)
Tu (1)=>ab chia het cho d(3)
Tu (2) va (3) =>4 chia het cho d
=>d thuoc tap hop cac uoc cua 4
ma a la stnhien le =>d le
=>d=1
=>a va ab+4 nguyen to cung nhau
xét 3 số tự nhiên lẻ liên tiếp:n; n+2;n+4(n là số tự nhiên lẻ)
a)Với giá trị nào của n thì ba số n; n+2 và n+4 là ba số nguyên tố
b)CMR : nếu n>3 thì ba số n; n+2 và n+4 ko thể cùng là ba số nguyên tố