Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Leo
Xem chi tiết
Fudo
22 tháng 1 2020 lúc 8:15

                                                             Bài giải

Gỉa sử :

\(A=M=x+1=\frac{8-x}{x-3}\)

\(\Rightarrow\text{ }\left(8-x\right)\left(x+1\right)=\left(x-3\right)\)

\(8x+8-x^2-x=x-3\)

\(7x+8-x^2=x-3\)

\(7x+8-x^2-x=3\)

\(6x+8-x^2=3\)

\(x\left(x+6\right)=-5\)

\(\Rightarrow\text{ }x\inƯ\left(5\right)\)    ( Nếu x thuộc Z hay N thì làm tiếp nhưng nếu không có thì mình làm được đến đây thôi ! )

Khách vãng lai đã xóa
Me
22 tháng 1 2020 lúc 9:00

Thiếu đề ! x thuộc Z hay N...

Khách vãng lai đã xóa
Cao Hoài Phúc
Xem chi tiết
Nguyễn Thái Sơn
Xem chi tiết
Nguyễn Văn Khoa
15 tháng 12 2016 lúc 18:08

gtnn xảy ra khi 2 giá trị tuyệt đối là 0

Mà Ix+3I+I11-xI=0+0

X sẽ bằng -3 hoặc x=11 nha bạn

Lưu Hoàng Thiên Chương
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 5 2022 lúc 0:52

Bài 1:

a: \(M=x^2+4x+4+5=\left(x+2\right)^2+5>=5\)

Dấu '=' xảy ra khi x=-2

b: \(N=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)

Dấu '=' xảy ra khi x=10

nguyen thi anh thu
Xem chi tiết
ngonhuminh
2 tháng 2 2017 lúc 9:33

a) 

\(\hept{\begin{cases}\left(x^2-9x\right)^2\ge0\\!y-2!\ge0\end{cases}\Rightarrow GTNN=10}\) đẳng thức đạt được khi y=2 và \(\orbr{\begin{cases}x=0\\x=9\end{cases}}\)

b) 

cách 1: ghép tạo số hạng (x-2015)

E=x^9(x-2015)+x^8(x-2015)+....+x(x-2015)+x-1=2014 tại x=2015

hoặc

x^10-1=(x-1)(x^9+x^8+..+1) cái này cơ bản

-2014x^9-2014x-2014+2014 thêm 2014 bớt 2014

(x^9+x^8+..+1)(x-1-2014)+2014=(x-2015)(x^9+..+1)+2014=2014

Le Linh
Xem chi tiết
Law Trafargal
Xem chi tiết
tthnew
22 tháng 12 2019 lúc 14:32

Theo mình đề này chỉ có max thôi nha!

\(B=\frac{3x^2-18x+9}{x^2-4x+4}=-\frac{3\left(x+3\right)^2}{5\left(x-2\right)^2}+\frac{18}{5}\le\frac{18}{5}\)

Đẳng thức xảy ra khi \(x=-3\)

Khách vãng lai đã xóa
Trần Ngô Bảo Ngọc
Xem chi tiết
Nguyễn Minh Đăng
27 tháng 10 2020 lúc 20:09

Sửa đề: Tìm GTNN của \(C=x^2-3x+2017\)

Ta có:

\(C=x^2-3x+2017\)

\(C=\left(x^2-3x+\frac{9}{4}\right)+\frac{3}{4}+2014\)

\(C=\left(x-\frac{3}{2}\right)^2+2014\frac{3}{4}\ge2014\frac{3}{4}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-\frac{3}{2}\right)^2=0\Rightarrow x=\frac{3}{2}\)

Vậy \(Min_C=2014\frac{3}{4}\Leftrightarrow x=\frac{3}{2}\)

Khách vãng lai đã xóa
tran xuan quynh
Xem chi tiết