phân tích đa thức thành nhân tử
18 m2- 36 mn+18 n2- 72 p2
Bài 1 : Phân tích các đa thức sau thành nhân tử
a) m3p + m2np - m2p2 - mnp2
b) ab( m2 + n2 ) + mn( a2 + b2 )
Bài 2 : Phân tích các đa thức sau thành nhân tử
a) (xy + ab )2 + ( ay - bx )2
b) m2( n - p ) + n2( p - m ) + p2?( m - n )
Bài 3 : Tìm y để giá trị của biểu thức 1 + 4y - y2 là lớn nhất
Bài 4 : Tìm x , biết : ( x3 - x2 ) - 4x2 + 8x - 4 = 0
Bài 5 : Phân tích đa thức sau thành nhân tử
A = ( a + b + c )3 - ( a + b - c )3 - ( b + c - a )3 - ( c + a - b )3
Bài 4:
Ta có: \(\left(x^3-x^2\right)-4x^2+8x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Bài 2 : Phân tích các đa thức sau thành nhân tử
a) (xy + ab )2 + ( ay - bx )2
b) m2( n - p ) + n2( p - m ) + p2?( m - n )
a: \(\left(xy+ab\right)^2+\left(bx-ay\right)^2\)
\(=x^2y^2+a^2b^2+x^2b^2+a^2y^2\)
\(=x^2\left(b^2+y^2\right)+a^2\left(b^2+y^2\right)\)
\(=\left(b^2+y^2\right)\left(x^2+a^2\right)\)
Bài 1 : Phân tích các đa thức sau thành nhân tử
a) m3p + m2np - m2p2 - mnp2
b) ab( m2 + n2 ) + mn( a2 + b2 )
a) \(=mp\left(m^2+mn-mp-np\right)=mp\left[m\left(m+n\right)-p\left(m+n\right)\right]=mp\left(m+n\right)\left(m-p\right)\)
b) \(=abm^2+abn^2+a^2mn+b^2mn=am\left(bm+an\right)+bn\left(bm+an\right)\)
\(=\left(bm+an\right)\left(am+bn\right)\)
\(2x^2+12x+18-2y^2\) (phân tích đa thức thành nhân tử)
2x² + 12x + 18 - 2y²
= 2(x² + 6x + 9 - y²)
= 2[(x² + 6x + 9) - y²]
= 2[(x + 3)² - y²]
= 2(x + 3 - y)(x + 3 + y)
= 2(x - y + 3)(x + y + 3)
phân tích đa thức sau thành nhân tử x ^ 2+ 9x+18
x2 + 3x + 6x + 18
= x(x + 3) + 6(x + 3)
= (x + 6)(x + 3)
\(x^2+9x+18\)
\(=x^2+6x+3x+18\)
\(=x\left(x+6\right)+3\left(x+6\right)\)
\(=\left(x+3\right)\left(x+6\right)\)
Câu 1:Phân tích đa thức thành nhân tử
a/ –6x2y + xy2
b/10a2c – 90b2c + 30bc2 – 10ac2
c/ax + bc – ac – bx
d/36 – x2 + 4xy – 4y2
e/ m2 + n2 + 4m + 4n + 2mn
f/ 2x2 – 1/2y2
\(a,=xy\left(-6x+y\right)\)
\(b,=10c\left(a^2-9b^2+3bc-ac\right)=10c\left[\left(a-3b\right)\left(a+3b\right)-c\left(a-3b\right)\right]\)
\(=10c\left[\left(a-3b\right)\left(a+3b-c\right)\right]\)
c,\(=a\left(x-c\right)-b\left(x-c\right)=\left(a-b\right)\left(x-c\right)\)
d,\(=-\left(x-2y-6\right)\left(x-2y+6\right)\)
e;\(=m^2+4m+mn+n^2+4n+mn=m\left(m+4+n\right)+n\left(m+4+n\right)\)\(=\left(m+n\right)\left(m+n+4\right)\)
f,\(=\dfrac{1}{2}\left(4x^2-y^2\right)=\dfrac{1}{2}\left(2x-y\right)\left(2x+y\right)\)
Phân tích đa thức sau thành nhân tử
5x^2 - 18x - 18
x2 - 11x +18
phân tích đa thức thành nhân tử
\(=x^2-2x-9x+18\)
\(=\left(x-2\right)\left(x-9\right)\)
OK k nha
phân tích đa thức thành nhân tử
(4x^2-3x+18)^2 - (4x^2+3x)
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Tìm hai nghiệm của phương trình 18 x 2 + 23x + 5 = 0 sau đó phân tích đa thức A = 18 x 2 + 23x + 5 = 0 sau thành nhân tử.
A. x 1 = − 1 ; x 2 = − 5 18 ; A = 18 ( x + 1 ) x + 5 18
B. x 1 = − 1 ; x 2 = − 5 18 ; A = ( x + 1 ) x + 5 18
C. x 1 = − 1 ; x 2 = 5 18 ; A = 18 ( x + 1 ) x + 5 18
D. x 1 = 1 ; x 2 = - 5 18 ; A = 18 ( x + 1 ) x + 5 18
Phương trình 18 x 2 + 23x + 5 = 0 có a – b + c = 18 – 23 + 5 = 0 nên phương trình có hai nghiệm phân biệt là x 1 = − 1 ; x 2 = − 5 18 . Khi đó A = 18 (x + 1) x + 5 18
Đáp án: A