x nhân 5=x 2
(3x -1 )2017=(3x -1 )2018
(x-1) x+ 2=(x-1)x
|3x-2018| + |x-2017| = |2x -1|
|x-1| + |x-3| +|x-5| +|x-7| = 8
|x-2018| + |x-2017| + |x-2018| = 2
MOi nguoi giup minh voi 4gio minh can roi
\(\left|3x-2018\right|+\left|x-2017\right|=\left|2x-1\right|\)
\(\Rightarrow\orbr{\begin{cases}3x-2018+x-2017=2x-1\\-\left(3x-2018\right)+\left[-\left(x-2017\right)\right]=2x-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4x-4035=2x-1\\\left(-3x-x\right)+\left(2018+2017\right)=2x-1\end{cases}}\)
Làm tiếp
TH2:
\(\left|3x-2018\right|+\left|x-2017\right|=\left|2x-1\right|\)
\(\Rightarrow\orbr{\begin{cases}3x-2018+x-2017=-2x+1\\-\left(3x-2018\right)+\left[-\left(x-2017\right)\right]=-2x+1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4x-4035=-2x+1\\\left(-3x-x\right)+\left(2018+2017\right)=-2x+1\end{cases}}\)
Tự tiếp tiếp nha bạn
Bài sau cũng tg tự vậy mà làm
GPT: \(x^3+x^2+1=\left(x^3-3x+2\right).2018^{x^2+3x-1}+\left(x^2+3x-1\right).2018^{x^3-3x+2}\)
Giải phương trình:
a) \(2\sqrt{x^2-4}-3=6\sqrt{x-2}-\sqrt{x+2}\)
b) \(\frac{\sqrt{x-2016}-1}{x-2016}+\frac{\sqrt{y-2017}-1}{y-2017}+\frac{\sqrt{z-2018}-1}{z-2018}=\frac{3}{4}\)
c) \(\sqrt{3+\sqrt{3+x}}=x\)
d) \(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)
e) \(\sqrt{x^2+3x+5}+\sqrt{x^2-2x+5}=5\sqrt{x}\)
f) \(\sqrt{x^2+3x}+2\sqrt{x+2}=2x+\sqrt{x+\frac{6}{x}+5}\)
a/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow2\sqrt{\left(x-2\right)\left(x+2\right)}-6\sqrt{x-2}+\sqrt{x+2}-3=0\)
\(\Leftrightarrow2\sqrt{x-2}\left(\sqrt{x+2}-3\right)+\sqrt{x+2}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x-2}+1\right)\left(\sqrt{x+2}-3\right)=0\)
\(\Leftrightarrow\sqrt{x+2}-3=0\Rightarrow x=11\)
b/ ĐKXĐ: ....
Đặt \(\left\{{}\begin{matrix}\sqrt{x-2016}=a>0\\\sqrt{y-2017}=b>0\\\sqrt{z-2018}=a>0\end{matrix}\right.\)
\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}-\frac{a-1}{a^2}+\frac{1}{4}-\frac{b-1}{b^2}+\frac{1}{4}-\frac{c-1}{c^2}=0\)
\(\Leftrightarrow\frac{\left(a-2\right)^2}{a^2}+\frac{\left(b-2\right)^2}{b^2}+\frac{\left(c-2\right)^2}{c^2}=0\)
\(\Leftrightarrow a=b=c=2\Rightarrow\left\{{}\begin{matrix}x=2020\\y=2021\\z=2022\end{matrix}\right.\)
a/ ĐK: \(x\ge0\)
\(\Leftrightarrow\sqrt{3+x}=x^2-3\)
Đặt \(\sqrt{3+x}=a>0\Rightarrow3=a^2-x\) pt trở thành:
\(a=x^2-\left(a^2-x\right)\)
\(\Leftrightarrow x^2-a^2+x-a=0\)
\(\Leftrightarrow\left(x-a\right)\left(x+a+1\right)=0\)
\(\Leftrightarrow x=a\) (do \(x\ge0;a>0\))
\(\Leftrightarrow\sqrt{3+x}=x\Leftrightarrow x^2-x-3=0\)
d/ ĐKXĐ: ...
\(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)
\(\Leftrightarrow\sqrt{2x-3}-1+x^2+1-\sqrt{6x^2+1}\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^4+2x^2+1-6x^2-1}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)\left(x-2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}\right)=0\)
\(\Leftrightarrow x=2\) (phần trong ngoặc luôn dương với mọi \(x\ge\frac{3}{2}\))
e/ ĐKXĐ: \(x\ge0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+3x+5}=a>0\\\sqrt{x^2-2x+5}=b>0\\\sqrt{x}=c\ge0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=5c^2\)
Ta được hệ: \(\left\{{}\begin{matrix}a^2-b^2=5c^2\\a+b=5c\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)\left(a+b\right)=5c^2\\a+b=5c\end{matrix}\right.\)
\(\Rightarrow5c\left(a-b\right)=5c^2\)
\(\Leftrightarrow\left[{}\begin{matrix}c=0\\a-b=c\end{matrix}\right.\)
f/ ĐKXĐ: \(x>0\)
\(\Leftrightarrow\sqrt{x\left(x+3\right)}+2\sqrt{x+2}=2x+\sqrt{\frac{\left(x+2\right)\left(x+3\right)}{x}}\)
\(\Leftrightarrow\sqrt{\frac{\left(x+2\right)\left(x+3\right)}{x}}-2\sqrt{x+2}+2x-2\sqrt{x\left(x+3\right)}=0\)
\(\Leftrightarrow\sqrt{\frac{x+2}{x}}\left(\sqrt{x+3}-2\sqrt{x}\right)-2\sqrt{x}\left(\sqrt{x+3}-2\sqrt{x}\right)=0\)
\(\Leftrightarrow\left(\sqrt{\frac{x+2}{x}}-2\sqrt{x}\right)\left(\sqrt{x+3}-2\sqrt{x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{x+3}{x}=4x\\x+3=4x\end{matrix}\right.\)
tìm GTNN
A=(x^2 -3x+1) . (x^2-3x-2) +2018
B=(x-1)(x+5)(x^2+4x+5)=2018
C=15-4x^2+4x
D=(x-1)(x-3)=21
tìm GTNN
A=(x^2 -3x+1) . (x^2-3x-2) +2018
B=(x-1)(x+5)(x^2+4x+5)=2018
C=15-4x^2+4x
D=(x-1)(x-3)=21
\(C=-\left(4x^2-4x-15\right)\)
\(=-\left(4x^2-4x+1-16\right)\)
\(=-\left(2x-1\right)^2+16< =16\)
Dấu = xảy ra khi x=1/2
\(D=x^2-4x+3+21\)
\(=x^2-4x+4+20=\left(x-2\right)^2+20>=20\)
Dấu '=' xảy ra khi x=2
tim x
1/x+2015+1/x+2017+1/x-2018=1/3x+2015
A=(x^2018+3x^2017-1)^2018 biết x=3
1. Cho A=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)và B=\(\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2017}+\frac{1}{2018}\)Tính \(\left(\frac{A}{B}\right)^{2018}\)
2. Tìm x biết
a)\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)
b)\(|x+2016|+|x+2017|+2018=3x\)
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{20}{41}\div\frac{1}{2}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{40}{41}\)
\(\Leftrightarrow\frac{1}{x+2}=1-\frac{40}{41}\)
\(\Leftrightarrow\frac{1}{x+2}=\frac{1}{41}\)
\(\Leftrightarrow x+2=41\)
\(\Leftrightarrow x=41-2\)
\(\Leftrightarrow x=39\)
???????????????????????????????????????????????????????
99% LÀ 39
CÒN LAI LÀ ĐÁP ÁN KHÁC
Giải phương trình :
a, x/2017 + x - 1/2018 = x - 2/2019 - 1
b, ( 2x + 1 ) + ( 4x + 3 ) + ( 6x + 5 ) +...+ ( 100x + 99 ) = 7600
c, ( x + 1 ) + ( 2x + 5 ) + ( 3x + 9 ) +...+ ( nx + 101 ) = 975
d, ( x - 1 ) + ( 2x - 3 ) + ( 3x - 5 ) +...+ ( nx - 2019 ) = n
Giải giúp mình nha, cảm ơn nhìu ❤
b. \(\left(2x+1\right)+\left(4x+3\right)+\left(6x+5\right)+...+\left(100x+99\right)=7600\)
\(\rightarrow\left(2x+4x+6x+...+100x\right)+\left(1+3+5+...+99\right)=7600\)
\(\rightarrow\frac{\left(2x+100x\right).50}{2}+\frac{\left(1+99\right).50}{2}=7600\)
\(\rightarrow51x.50+50.50=7600\)
\(\rightarrow51x.50+2500=7600\)
\(\rightarrow51x.50=7600-2500\)
\(\rightarrow51x.50=5100\)
\(\rightarrow50x=100\)
\(\rightarrow x=\frac{100}{50}=2\)
Vậy x = 2